
 1

 A Review: Calling FORTRAN From VBA (Excel 2003)

 Utilizing MicroSoft PowerStation Version 4.0

 and Windows XP

 Edward M. Rosen

 EMR Technology Group

Introduction

Calling FORTRAN code from VBA
[1]

 is useful when it is desired to avoid

recoding FORTRAN into VBA or it is desired to take advantage of the greater

execution speed of FORTRAN. The steps to call FORTRAN from VBA , however,

depend on the FORTRAN compiler and the operating system being used.

If the FORTRAN code is in the form of a main program (.exe file) then

the Shell function of VBA is utilized
[2]

. However, if the FORTRAN

code is in the form of a subroutine, then generating a DLL is required
[3]

.

Previous communications on this topic
[2,3]

 utilized Digital Visual Fortran Professional

Edition and DOS. This communication utilizes Microsoft PowerStation Version 4.0 and

Windows XP.

The paper is divided into two parts. First the generation of a FORTRAN .exe file is

reviewed and an example is given using the Shell function of VBA. Then the generation

of a DLL file is detailed followed by an example illustrating how the DLL is called

in a VBA procedure.

Creating an .exe File

Creation of an exe file utilizing Microsoft PowerStation (Professional

Edition) Version 4.0.

1. Create a FORTRAN main program utilizing a text editor Call it SOURCE1.FOR

and place the file in directory C:\TMP (Figure 1)

2. Invoke PowerStation. Click on the MicroSoft Developer Studio

3. Select File from the menu

4. Click on New

5. Select Project Workspace. Click OK

6. Console Application is highlighted. Name the workspace (ggg)

7. Click Create

8. Select File again from the menu

9. Click New

10. Select Text File then OK

11. Select Insert from menu. Highlight ‘ Files Into Project’

12. Double Click on the c:directory

 2

13. Scroll down to highlight TMP. Click OK Highlight Source1.For. Click OK.

14. Select ‘build’ from the menu. Then select ‘ build ggg.exe.’ Note the compile and

link messages in the lower window

15. When the compile and link are completed without an error, copy the ggg.exe file

from C:\MSDEV\Projects\ggg\debug\ggg.exe to C:\TMP\ggg.exe

The Source1.For file of Figure 1 (a main FORTRAN program) reads an input file

C:\TMP\TSIN1 shown in Figure 2. Calculations (shown in Figure 1) using the input file

are carried out and placed into C:\TMP\TSOUT shown in Figure 3.The ggg.exe program

can be tested by varying the TSIN1 input file.

The Fortran Program Source1.FOR (Figure 1) is based on illustration 3 page 234

of Hougan and Watson
[4]

.

**
 Program to read a file, do calculations and output the results

!

 Program Source1

! PP(1) = Heat of Vaporization at NBP cal/gm

! PP(2) = Normal Boiling Point Deg C

! PP(3) = Critical Temperature in Deg C

! PP(4) = Temperature at which Heat of Vaporization is desired Deg C

! Y = Heat of Vaporization at desired temperature cal/gm

!

 Real PP(4), Y, Y1, XL1, XBP, XTC, XT, TR1, TR2

!

 OPEN (Unit =9, FILE = 'C:\TMP\TSIN1')

 OPEN (Unit =8, FILE = 'C:\TMP\TSOUT')

!

 READ (9, *, END = 100) (PP(I), I = 1,4)

! Miscellaneous Calculations

!

100 XL1 = PP(1)

 XBP = PP(2)

 XTC = PP(3)

 XT = PP(4)

 TR1 = (273+XBP)/(273+XTC)

 TR2 = (273+XT)/(273 +XTC)

 Y1 = (1-TR2)/(1-TR1)

 Y = XL1*(Y1**0.38)

!

 WRITE(8, 1000) Y

 1000 FORMAT (F7.2)

 END Program Source1

 Figure 1 A FORTRAN Main Program

**

 3

 204, 78, 243, 180

 Figure 2 Input File C:\TMP\TSIN1

**

**

141.49

 Figure 3 Output file C:\TMP\TSOUT

Utilizing The Shell Function

The Shell Function of VBA can only be used with an executable file.

Figure 4 is a VBA procedure (in Spreadsheet named FullProgram.XLS) that uses the

Shell Function to execute the ggg exe file. Input data is retrieved from the spreadsheet

(Cells method) and placed in the file C:\Tmp\Tsin1. The Shell function is then invoked to

carry out the calculations. The output file C:\Tmp\Tsout is transferred back to the

spreadsheet again using the Cells method.

It is noted that the procedure runs asynchronously and enough time must be given to

the Fortran program to complete its calculations. A ‘ MsgBox’ command which generates

a pause is a simple way to insure this rather than attempting to calculate the elapsed

time of execution before proceeding.

Figure 5 lists the spreadsheet (FullProgram.XLS) that contains the VBA procedure

CallFile2() of Figure 4.

**
Sub CallFile2()

Reset

' Clear D3 on Sheet 1

Call moda

' Write Data From Spreadheet (Column 1) to TSin1

FileIn = "C:\Tmp\Tsin1"

Call WriteDataToTsin1(FileIn)

' Execute Source1 FORTRAN program on C;\tmp

Retval = Shell("C:\TMP\ggg.exe", 1)

MsgBox " Pause After Shell Call Task ID Number = " & Retval

'Define Output File

 4

FileOut = "C:\Tmp\Tsout"

' Read Output Results From Tsout and Place Into Spreadsheet

Call ReadBackFromTsout(FileOut)

End Sub

Sub moda()

 Sheets("Sheet1").Select

 Range("D3:D3").Select

 Selection.ClearContents

End Sub

Sub WriteDataToTsin1(FileIn)

Dim A3 As Single

Dim A4 As Single

Dim A5 As Single

Dim A6 As Single

A3 = Cells(3, 1)

A4 = Cells(4, 1)

A5 = Cells(5, 1)

A6 = Cells(6, 1)

Open FileIn For Output As #1

Write #1, A3, A4, A5, A6

Close #1

End Sub

Sub ReadBackFromTsout(FileOut)

Open FileOut For Input As #1

Do Until EOF(1)

 Input #1, D1

Loop

Close #1

Cells(3, 4) = D1

End Sub

Figure 4 VBA Procedure CallFile2() Using the Shell Function to execute

FORTRAN Program ggg.exe

 5

**

This is the VBA spreadsheet FullProgram.XLS
 Input

Data Data For Ethyl Alcohol

Output in D3
 204 Heat Vap at NBP calories per gram

141.49 cal/ gram at Temp Deg 180

78 Normal Boiling Point Deg C
 243 Critical Temperature Deg C

180
Temp (Deg C) at which Heat of Vap is
Sought

 Figure 5 Spreadsheet FullPrigram.XLS

**

Creating a FORTRAN DLL

Figure 6 is listing of a FORTRAN subroutine MULLX. Two lines have been added

starting with !MS$. These are metacommands which allow for

passing variables and procedures between FORTRAN PowerStation and VBA.

**
! Fortran Subroutine as DLL

 Subroutine MULLX (X1,X2,X3,X4, D)

!MS$ATTRIBUTES DLLEXPORT::MULLX

!MS$ATTRIBUTES ALIAS: 'MULLX'::MULLX

 REAL XL1, XBP, XTC, XT, TR1, TR2, Y1, Y

!

! X1 = Heat of Vaporization at NBP cal/gm

! X2 = Normal Boiling Point Deg C

! X3 = Critical Tempertaure in Degree C

! X4 = Temperature at Which Heat of Vaporization is Sought

!

! D = Output, Heat of Vapoization at X4 cal/gm

 XL1 = X1

 XBP = X2

 XTC = X3

 XT = X4

 TR1 = (273+XBP)/(273+XTC)

 TR2 = (273+XT)/(273+XTC)

 Y1 = (1-TR2)/(1-TR1)

 Y = XL1*(Y1**.38)

 D = Y

 END Subroutine

Figure 6. FORTRAN Subroutine MULLX to be made into a DLL

**

 6

To create the FORTRAN DLL for subroutine MULLX.FOR

1. Create a FORTRAN Subroutine (MULLX.FOR) with a text editor

Add the ATTRIBUTE DLLEXPORT and ALIAS (Figure 6)

 2. Place the file in directory C:\TMP1\

 3. Invoke PowerStation. Click on MicroSoft Developer Studio

 4.. Click File then New

 5. Highlight Project Workspace. Press OK

 6. Specify MULLX as the name (The name is arbitrary)

 7. Highlight Dynamic Link Library and then ‘Create’

 8. Click File then New

 9. Choose Text File then OK

 10 Select Insert from the Menu. Then, ‘Insert Files Into Project’

 11 Double Click on c:\

12. Scroll down to TMP1 and click on it Then OK

13. Highlight MULLX.FOR

 14. Click OK

 15. Select Build from the menu. Then ‘Build MULLX.DLL’

 16. When compile and link are completed successfully the DLL is on

 C:\MSDEV\Projects\MULLX\DEBUG\MULLX.DLL

Using the FORTRAN DLL

The following is a VBA procedure that uses the MULLX.DLL

Private Declare Sub MULLX Lib "C:\msdev\projects\MULLX\debug\MULLX.DLL" _

(X1 As Single, X2 As Single, X3 As Single, X4 As Single, ByRef D As Single)

Sub Mullnew()

Dim X1, X2, X3, X4 As Single

Dim D As Single

X1 = Cells(7, 2)

X2 = Cells(8, 2)

X3 = Cells(9, 2)

X4 = Cells(10, 2)

Call MULLX(X1, X2, X3, X4, D)

Cells(13, 5) = D

End Sub

Figure 7 VBA Procedure Mullnew Calling MULLX. DLL

The VBA procedure (Figure 7) is called Mullnew. The arguments X1 X2, X3 and X4 are

taken from the spreadsheet and passed to the sub MULLX. The sub

 7

carries out the calculations indicated in Figure 6. Finally the result is placed in the D

variable and passed to the spreadsheet using the Cells method.

Figure 8 is the spreadsheet used in the Mullnew procedure which utilizes the

MULLX.DLL

**

This utilizes the MULLX.DLL for the Fortran Subroutine (MULLX.FOR)

 Heat of Vaporization from Hougen and Watson Illustration 3 page 234

Data for Ethyl Alcohol

 Variable Data Definition
 x1 204 Heat of Vaporization at NBP cal/gm

 x2 78 Normal Boiling Point Deg C
 x3 243 Critical Temperature Deg C
 x4 180 Temperature at Which Heat of Vaporization is Sought

 OutPut
 Heat of Vaporization At X4 in cal/gm 141.4932

 Figure 8 Spreadsheet MullX.XLS

Conclusions

The use of the Shell function of VBA and/or use of a FORTRAN DLL provides a

convenient way of incorporating FORTRAN into VBA programs.

Caution must be used to insure compatibility across different FORTRAN compilers

and operating systems in calling FORTRAN from VBA.

References

 1. “How to Call a FORTRAN DLL from VBA (FORTRAN DLL Overview)”

 www.emagenit.com/FORTRAN%20 DLL.htm

 2. Rosen, Edward, ”Executing FORTRAN Programs from Excel: Use of the Shell

 Function” CACHE News, No 47, Fall 1998

 3. Rosen, Edward “Calling Fortran Subroutines from Excel 7.0”. CACHE News,

 No 48 Spring 1999.

 4. Hougen,O. and Watson.K, Chemical Process Principles. Part One Material

 And Energ Balances, John Wiley New York (1943).

http://www.emagenit.com/FORTRAN

