A Review: Calling FORTRAN From VBA (Excel 2003) <u>Utilizing MicroSoft PowerStation Version 4.0</u> <u>and Windows XP</u>

Edward M. Rosen EMR Technology Group

Introduction

Calling FORTRAN code from VBA ^[1] is useful when it is desired to avoid recoding FORTRAN into VBA or it is desired to take advantage of the greater execution speed of FORTRAN. The steps to call FORTRAN from VBA, however, depend on the FORTRAN compiler and the operating system being used.

If the FORTRAN code is in the form of a main program (.exe file) then the Shell function of VBA is utilized ^[2]. However, if the FORTRAN code is in the form of a subroutine, then generating a DLL is required ^[3].

Previous communications on this topic ^[2,3] utilized Digital Visual Fortran Professional Edition and DOS. This communication utilizes Microsoft PowerStation Version 4.0 and Windows XP.

The paper is divided into two parts. First the generation of a FORTRAN .exe file is reviewed and an example is given using the Shell function of VBA. Then the generation of a DLL file is detailed followed by an example illustrating how the DLL is called in a VBA procedure.

Creating an .exe File

Creation of an exe file utilizing Microsoft PowerStation (Professional Edition) Version 4.0.

- 1. Create a FORTRAN main program utilizing a text editor Call it SOURCE1.FOR and place the file in directory C:\TMP (Figure 1)
- 2. Invoke PowerStation. Click on the MicroSoft Developer Studio
- 3. Select File from the menu
- 4. Click on New
- 5. Select Project Workspace. Click OK
- 6. Console Application is highlighted. Name the workspace (ggg)
- 7. Click Create
- 8. Select File again from the menu
- 9. Click New
- 10. Select Text File then OK
- 11. Select Insert from menu. Highlight 'Files Into Project'
- 12. Double Click on the c:directory

- 13. Scroll down to highlight TMP. Click OK Highlight Source1.For. Click OK.
- 14. Select 'build' from the menu. Then select 'build ggg.exe.' Note the compile and link messages in the lower window
- 15. When the compile and link are completed without an error, copy the ggg.exe file from C:\MSDEV\Projects\ggg\debug\ggg.exe to C:\TMP\ggg.exe

The Source1.For file of Figure 1 (a main FORTRAN program) reads an input file C:\TMP\TSIN1 shown in Figure 2. Calculations (shown in Figure 1) using the input file are carried out and placed into C:\TMP\TSOUT shown in Figure 3.The ggg.exe program can be tested by varying the TSIN1 input file.

The Fortran Program Source1.FOR (Figure 1) is based on illustration 3 page 234 of Hougan and Watson ^[4].

```
************************
  Program to read a file, do calculations and output the results
!
   Program Source1
  PP(1) = Heat of Vaporization at NBP cal/gm
  PP(2) = Normal Boiling Point Deg C
   PP(3) = Critical Temperature in Deg C
   PP(4) = Temperature at which Heat of Vaporization is desired Deg C
         = Heat of Vaporization at desired temperature cal/gm
   Real PP(4), Y, Y1, XL1, XBP, XTC, XT, TR1, TR2
   OPEN (Unit =9, FILE = 'C:\TMP\TSIN1')
   OPEN (Unit =8, FILE = 'C:\TMP\TSOUT')
   READ (9, *, END = 100) (PP(I), I = 1,4)
   Miscellaneous Calculations
100 XL1 = PP(1)
    XBP = PP(2)
    XTC = PP(3)
    XT = PP(4)
    TR1 = (273+XBP)/(273+XTC)
    TR2 = (273+XT)/(273 + XTC)
     Y1 = (1-TR2)/(1-TR1)
     Y = XL1*(Y1**0.38)
     WRITE(8, 1000) Y
1000 FORMAT (F7.2)
```

Figure 1 A FORTRAN Main Program

END Program Source1

.......

204, 78, 243, 180

Figure 2 Input File C:\TMP\TSIN1

141.49

Figure 3 Output file C:\TMP\TSOUT

Utilizing The Shell Function

The Shell Function of VBA can only be used with an executable file.

Figure 4 is a VBA procedure (in Spreadsheet named FullProgram.XLS) that uses the Shell Function to execute the ggg exe file. Input data is retrieved from the spreadsheet (Cells method) and placed in the file C:\Tmp\Tsin1. The Shell function is then invoked to carry out the calculations. The output file C:\Tmp\Tsout is transferred back to the spreadsheet again using the Cells method.

It is noted that the procedure runs asynchronously and enough time must be given to the Fortran program to complete its calculations. A 'MsgBox' command which generates a pause is a simple way to insure this rather than attempting to calculate the elapsed time of execution before proceeding.

Figure 5 lists the spreadsheet (FullProgram.XLS) that contains the VBA procedure CallFile2() of Figure 4.

Sub CallFile2()

Reset

'Clear D3 on Sheet 1

Call moda

' Write Data From Spreadheet (Column 1) to TSin1

 $FileIn = "C:\Tmp\Tsin1"$

Call WriteDataToTsin1(FileIn)

'Execute Source1 FORTRAN program on C;\tmp

 $Retval = Shell("C:\TMP\ggg.exe", 1)$

MsgBox " Pause After Shell Call Task ID Number = " & Retval 'Define Output File

```
FileOut = "C:\Tmp\Tsout"
'Read Output Results From Tsout and Place Into Spreadsheet
Call ReadBackFromTsout(FileOut)
End Sub
Sub moda()
Sheets("Sheet1").Select
Range("D3:D3").Select
Selection.ClearContents
End Sub
Sub WriteDataToTsin1(FileIn)
Dim A3 As Single
Dim A4 As Single
Dim A5 As Single
Dim A6 As Single
A3 = Cells(3, 1)
A4 = Cells(4, 1)
A5 = Cells(5, 1)
A6 = Cells(6, 1)
Open FileIn For Output As #1
Write #1, A3, A4, A5, A6
Close #1
End Sub
Sub ReadBackFromTsout(FileOut)
Open FileOut For Input As #1
Do Until EOF(1)
  Input #1, D1
Loop
Close #1
Cells(3, 4) = D1
End Sub
Figure 4 VBA Procedure CallFile2() Using the Shell Function to execute
FORTRAN Program ggg.exe
```

This is the VBA spreadsheet FullProgram.XLS						
Input						
Data	Data For Ethyl Alcohol	Output in D3	Output in D3			
204	Heat Vap at NBP calories per gram	141.49	cal/ gram at Temp Deg	180		
78	Normal Boiling Point Deg C					
243	Critical Temperature Deg C					
	Temp (Deg C) at which Heat of Vap is					
180	Sought					

Figure 5 Spreadsheet FullPrigram.XLS

Creating a FORTRAN DLL

Y1 = (1-TR2)/(1-TR1)Y = XL1*(Y1**.38)

END Subroutine

D = Y

Figure 6 is listing of a FORTRAN subroutine MULLX. Two lines have been added starting with !MS\$. These are metacommands which allow for passing variables and procedures between FORTRAN PowerStation and VBA.

```
**********************
   Fortran Subroutine as DLL
   Subroutine MULLX (X1,X2,X3,X4, D)
!MS$ATTRIBUTES DLLEXPORT::MULLX
!MS$ATTRIBUTES ALIAS: 'MULLX'::MULLX
   REAL XL1, XBP, XTC, XT, TR1, TR2, Y1, Y
   X1 = Heat of Vaporization at NBP cal/gm
   X2 = Normal Boiling Point Deg C
   X3 = Critical Temperature in Degree C
!
   X4 = Temperature at Which Heat of Vaporization is Sought
   D = Output, Heat of Vapoization at X4 cal/gm
   XL1 = X1
   XBP = X2
   XTC = X3
   XT = X4
   TR1 = (273+XBP)/(273+XTC)
   TR2 = (273+XT)/(273+XTC)
```

Figure 6. FORTRAN Subroutine MULLX to be made into a DLL

To create the FORTRAN DLL for subroutine MULLX.FOR

- 1. Create a FORTRAN Subroutine (MULLX.FOR) with a text editor Add the ATTRIBUTE DLLEXPORT and ALIAS (Figure 6)
- 2. Place the file in directory C:\TMP1\
- 3. Invoke PowerStation. Click on MicroSoft Developer Studio
- 4.. Click File then New
- 5. Highlight Project Workspace. Press OK
- 6. Specify MULLX as the name (The name is arbitrary)
- 7. Highlight Dynamic Link Library and then 'Create'
- 8. Click File then New
- 9. Choose Text File then OK
- 10 Select Insert from the Menu. Then, 'Insert Files Into Project'
- 11 Double Click on c:\
- 12. Scroll down to TMP1 and click on it Then OK
- 13. Highlight MULLX.FOR
- 14. Click OK
- 15. Select Build from the menu. Then 'Build MULLX.DLL'
- 16. When compile and link are completed successfully the DLL is on C:\MSDEV\Projects\MULLX\DEBUG\MULLX.DLL

Using the FORTRAN DLL

The following is a VBA procedure that uses the MULLX.DLL

Private Declare Sub MULLX Lib "C:\msdev\projects\MULLX\debug\MULLX.DLL" _ (X1 As Single, X2 As Single, X3 As Single, X4 As Single, ByRef D As Single) Sub Mullnew()

Dim X1, X2, X3, X4 As Single

Dim D As Single

X1 = Cells(7, 2)

X2 = Cells(8, 2)

X3 = Cells(9, 2)

X4 = Cells(10, 2)

Call MULLX(X1, X2, X3, X4, D)

Cells(13, 5) = D

End Sub

Figure 7 VBA Procedure Mullnew Calling MULLX. DLL

The VBA procedure (Figure 7) is called Mullnew. The arguments X1 X2, X3 and X4 are taken from the spreadsheet and passed to the sub MULLX. The sub

carries out the calculations indicated in Figure 6. Finally the result is placed in the D variable and passed to the spreadsheet using the Cells method.

Figure 8 is the spreadsheet used in the Mullnew procedure which utilizes the MULLX.DLL

This utilizes the MULLX.DLL for the Fortran Subroutine (MULLX.FOR)										
Heat of Vaporization from Hougen and Watson Illustration 3 page 234										
Data for Ethyl Alcohol										
Variable	Data	Definition								
x1	204	Heat of Vaporization at NBP cal/gm								
x2	78	Normal Boiling Point Deg C								
х3	243	Critical Temperature Deg C								
x4	180	Temperature at Which Heat of Vaporization is Sought								
OutPut										
Heat of Vaporization At X4 in cal/gm				141.4932						

Figure 8 Spreadsheet MullX.XLS

Conclusions

The use of the Shell function of VBA and/or use of a FORTRAN DLL provides a convenient way of incorporating FORTRAN into VBA programs.

Caution must be used to insure compatibility across different FORTRAN compilers and operating systems in calling FORTRAN from VBA.

References

- 1. "How to Call a FORTRAN DLL from VBA (FORTRAN DLL Overview)" www.emagenit.com/FORTRAN%20 DLL.htm
- 2. Rosen, Edward, "Executing FORTRAN Programs from Excel: Use of the Shell Function" *CACHE News*, No 47, Fall 1998
- 3. Rosen, Edward "Calling Fortran Subroutines from Excel 7.0". *CACHE News*, No 48 Spring 1999.
- 4. Hougen,O. and Watson.K, *Chemical_Process Principles. Part One Material And Energ Balances*, John Wiley New York (1943).