A Review: The Pendulum and VBA™ Edward M. Rosen

EMR Technology Group, Chesterfield, Missouri

Introduction

The motion of a simple pendulum in Cartesian coordinates (x, y) with center (0,0) and length L has received considerable attention $^{[1,2,3]}$. Although a number of codes $^{[4]}$ to solve differential algebraic equation systems (DAEs) have been developed, none have been found to be implemented in VBATM.

This paper reviews the development of the pendulum equations and presents VBA™ coding for the solution of the equations. A fourth order Runge-Kutta integration routine is utilized to integrate two dependent variables.

Excel routine in Microsoft Office Home and Student 2010 was used in this study.

Equation Development

Figure 1 depicts a simple pendulum. In addition to the equations ^[2] for Newton's Law (force = mass x acceleration) there is an equality constraint that must be satisfied:

$$x(t)^{2} + y(t)^{2} = L^{2}$$

 $m \cdot d^{2}/dt^{2} x(t) = (x(t)/L) \cdot F(t)$
 $m \cdot d^{2}/dt^{2} y(t) = -m \cdot g + (y(t)/L) \cdot F(t)$

(t is time, L is the length of the rod)
(x component of the tension force)
(the y-component of the tension force
and the additional downward
force due to gravity (g) acting on the
pendulum)

(1)

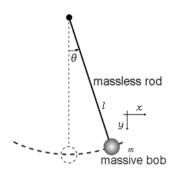


Figure 1. The simple pendulum^[5]

Dividing by m, substituting $\lambda(t) = F(t)/(L \cdot m)$ and dropping the t in $\lambda(t)$, x(t), and y(t) yields

$$x^{2} + y^{2} = L^{2}$$

$$x'' = \lambda x$$

$$y'' = -g + \lambda y$$
(2)

Finally letting u = x' and v = y' there results

$$x^2 + y^2 = L^2$$
 (3)

$$x' = u$$

 $y' = v$
 $u' = \lambda x$
 $v' = -g + \lambda v$

The number of times it takes to reduce the dependent variables to a set of first order ordinary differential equations determines the index of the system $^{[5]}$. Here λ is a dependent variable whose derivative is sought.

Differentiate the equality constraint once (First time):

$$xx' + yy' = 0$$

Substitute for x',y'

$$xu + yv = 0$$

Differentiate the constraint again (Second time):

$$xu' + yv' + u^2 + v^2 = 0$$

Substitute for u', v'

$$x^2\lambda + y^2\lambda - yg + u^2 + v^2 = 0$$

Substitute the original constraint:

$$L^2 \lambda - yg + u^2 + v^2 = 0$$

Differentiate the constraint again and solve for λ' (Third time):

$$\lambda' = (1/L^2) (vg - 2 \lambda ux - 2v (\lambda y - g))$$

Using xu +yv = 0
$$\lambda' = (1/L^2) \cdot (3vg)$$

This then is an index 3 system:

In this paper λ is a dimensionless measure of the tension force. When the pendulum equations are developed using the Euler-Lagrange equation, λ is defined as a Lagrange multiplier [6,7,8].

Solving the Differential Equations

Combining the above equations the system to be solved is a semi-explicit DAE of index $\mathbf{1}^{[4]}$:

$$x' = u$$

$$u' = \lambda x$$

$$0 = x^2 + y^2 - L^2$$

$$0 = 11x \pm 0.07$$

0 =
$$ux + vy$$

0 = $u^2 - gy + v^2 + L^2\lambda$

Consistent starting values can be set by considering the pendulum in a vertical position (x=0, Θ =0). If the value of u is estimated, then both x and u can be integrated if the sign of y is given in $y = \pm v(L^2-x^2)$.

Again if $y \ne 0$ then v = -ux/y and $\lambda = (gy-u^2 - v^2)/L^2$. To proceed to the next point it is sufficient to get the derivatives of x and u. $(x' = u, u' = \lambda x)$.

The integration is carried out stepwise with a fourth order Runge-Kutta code in VBA procedure INTEG (Appendix 1). Function dy/dx evaluates the right hand side of the differential equations for x and u.

Table 1 is the spreadsheet of the solution. The initial values of x and u are set: of x = 0 and u = 4.4. The 4.4 was chosen (by trial) so that the angle of deflection (Θ) would get as close as possible to horizontal from the starting position. (The value of Θ_{max} is linearly dependent on u). The values of y, v, and λ are subsequently calculated. The value of Θ (in degrees) is determined from the value of ATN(x/y) in radians.

The calling sequence to Function INTEG is:

INTEG (current time, current values of x and u, parameter vector)

Where:

Parameter Vector

1	N	2	Number of dependent variables
2	h	0.01	step size in sec
3	g	9.806650	standard acceleration of gravity m/sec ²
4	L	1	length of rod, m
5	m	1	mass of pendulum, kg

Figure 2. The parameter vector

Typically if the initial values of time, x and u are in row 7 of the spreadsheet, then the values at the incremented time are specified in row 8 by highlighting A8 to C8 and entering:

= INTEG(\$A7, \$B7:\$C7,\$I\$6) with **Ctrl+Shift+Enter** (Array formula):

The A column is the time, columns B and C are the dependent variables x and u and \$I\$6 is the starting point of the parameter vector column.

The values at the incremented time, x and u then appear in row 8. Values of y, v, λ , x/y and Θ are calculated from the new values of x and u. Copies of row 8 are then made. The integration is carried out for 3.93 seconds.

Pendulum Study

Time x u y v λ x/y Θ	prm 2.000000 0.010000 9.806650 1.000000
	0.010000 9.806650
sec	9.806650
0.00 0.0000 4.4000 -1.0000 0.0000 -29.1667 0.0000 0.0000	
0.01 0.0440 4.3936 -0.9990 0.1934 -29.1382 -0.0440 -2.5206	1.000000
0.02 0.0878 4.3744 -0.9961 0.3857 -29.0530 -0.0882 -5.0387	
0.03 0.1314 4.3426 -0.9913 0.5757 -28.9115 -0.1326 -7.5519	1.000000
0.04	
0.05 0.2174 4.2425 -0.9761 0.9447 -28.4633 -0.2227 -12.5538	
0.06 0.2595 4.1750 -0.9658 1.1216 -28.1592 -0.2687 -15.0375	
0.07	
0.08	
0.09	
0.10	
0.11 0.4570 3.6881 -0.8895 1.8948 -25.9151 -0.5138 -27.1922	
0.12	
0.13	
0.14	
0.15	
0.16	
0.17	
0.18	
0.19	
0.20 0.7349 2.4495 -0.6781 2.6546 -19.6976 -1.0837 -47.3014	

Table 1. Spreadsheet for Solving the Differential Equations (abbreviation of table to 3.93 sec)

Graphing the Results

Figures 3-6 are plots generated from the spreadsheet. Figure 3 shows that the value of y approaches zero as the pendulum becomes horizontal. Figure 4 records the swing of the pendulum. Figure 5 implies the angle of the pendulum between the vertical and the horizontal. Note that ATAN(x/y) gives the angle in radians. Figure 6 documents λ , the dimensionless tension in the rod

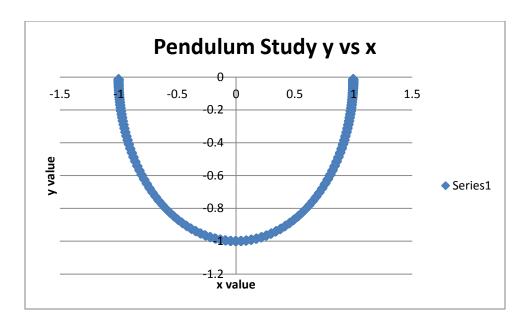


Figure 3. y vs x

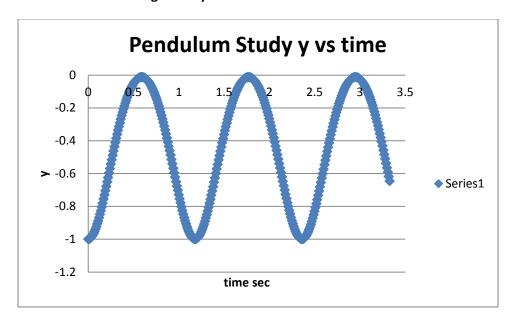


Figure 4. y vs time

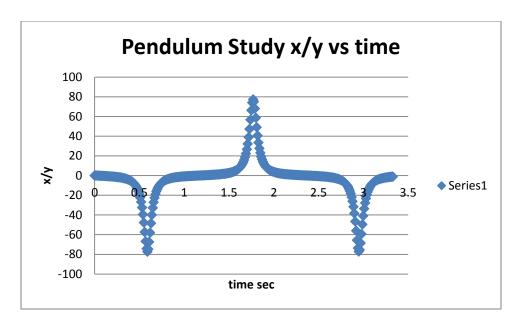


Figure 5. x/y vs time

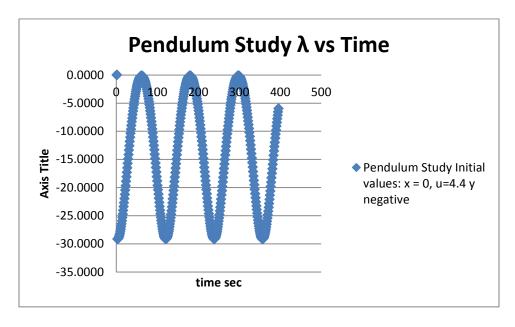


Figure 6. λ vs time

Determining the Period

The period of the pendulum can be determined from the spreadsheet. In Table 2 are extractions from the spreadsheet at the point the pendulum has swung to its maximum angle. The elapsed time is 2.95 - 0.59 = 2.36 sec.

Time	X	u	У	V	λ	x/y	θ
sec							
0.58	0.9999	0.00136	-0.0134	0.1013	-0.1421	-74.383	-89.2298
0.59	0.9999	4.2E-05	-0.0129	0.0032	-0.1267	-77.392	-89.2597
0.6	0.9999	-0.00127	-0.0134	-0.095	-0.1402	-74.743	-89.2335
2.94	0.9999	0.00155	-0.0136	0.1142	-0.1463	-73.59	-89.2215
2.95	0.9999	0.00021	-0.0129	0.0162	-0.1271	-77.298	-89.2588
2.96	0.9999	-0.00109	-0.0133	-0.082	-0.1368	-75.383	-89.24

Table 2. Extractions from the spreadsheet at times of maximum angles (Θ_{max}) from the vertical

The period from the spreadsheet can be compared with that from the literature $^{[7]}$. Table 3 evaluates the period (Equation (4)) for a pendulum whose maximum angle (Θ_{rad}) is 1.558.

$$T = 2 * Pi* \sqrt{\frac{L}{g}} (1 + \frac{1}{16} * \Theta_{rad}^{2} + \frac{11}{3072} * \Theta_{rad}^{4} + \frac{173}{737280} * \Theta_{rad}^{6} + \frac{22931}{1321205760} * \Theta_{rad}^{8} + ...$$

$$+ \frac{1319183}{951268147200} * \Theta_{rad}^{10} + ...)$$
(4)

Period Calculation

Table 3. Evaluation of period for maximum angle Θ_{max}

The period from the spreadsheet matches that from the literature series very well (2.36 sec).

Conclusions

Index reduction (by differentiation of the constraint) reduces the index 3 pendulum equations to a semi-explicit DAE of index 1. The equations are then integrated with an ODE code (Runge-Kutta) written in VBA^{TM} .

The accuracy of the integration is confirmed by comparing a spreadsheet period with a literature value.

Numerical instability is not observed.

The equations are limited to angles up to 90° from the vertical at which point y goes to zero.

References

- 1. Petzold, L., *Numerical Solution of Differential-Algebraic-Equations* University of Minnesota, Minneapolis, Minnesota, 55455
- 2. Quicksheets Calculus and Differential Equations
 - DAE- Simple Pendulum Motion
- 3. Tan, Suri, *Differential-Algebraic Equations (DAEs) and numerical Methods,* http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Sirui_Talk.pdf
- 4. Differential Algebraic Equation Wikipedia the free encyclopedia
- 5. *The Differential-Algebraic Equation (DAE) Solver* http://ww.ni.com/example/31306/en
- 6. MIT Open Couse Ware, http://ocw.mit.edu
- 7. Pendulum (mathematics) Wikipedia the free encyclopedia
- 8. Schulz, S., Four Lectures on Differential-Algebraic-Equations,
 Humboldt Universitat zu Berlin, June 13, 2003
 https://www.math.auckland.ac.nz/deptdb/dept-reports/497.pdf

Nomenclature

- F tension force in rod newtons
- g gravitational acceleration m/sec²
- I, L Length of pendulum meters
- m mass of the pendulum's mass point kg
- T period of pendulum sec
- u equal to x' (momentum variable)
- v equal to y' (momentum variable)
- x Cartesian coordinate horizontal meters
- x' first derivative of x
- x" second derivative of x
- y Cartesian coordinate vertical- meters
- y' first derivative of y
- y" second derivative of y

Θ angle of deflection measured from downward position of the rod to the x horizontal positive Axis – Degrees

 Θ_{max} Amplitude or largest angle achieved – Degrees

 Θ_{rad} Amplitude or largest angle achieved - Radians

λ dimensionless constraint force

Other

DAE Differential-Algebraic Equation

ODE Ordinary Differential Equation: ODE's have index of zero

Semi-explicit DAE of index 1: An ODE with constraints

VBA™ Visual Basic for Applications

Appendix 1. Listing of Procedure INTEG

```
Option Explicit

Private Function integ(x, y, prm)

Dim N, IR, NN, I As Integer
Dim h, xx As Double

N = prm(1)

NN = N + 1

ReDim yy(1 To N) As Double
ReDim ddd(1 To NN)

h = prm(2)

xx = x

For I = 1 To N

yy(I) = y(I)

Next

IR = rk4a(N, h, xx, yy, prm)

xx = xx + h
```

ddd(1) = xx

```
For I = 2 To NN
 ddd(I) = yy(I - 1)
Next I
integ = ddd
End Function
Public Function rk4a(N, h, x, y, prm)
'Modified from Pedro L. Claveria abril/2002
'based in EMR Technology Group Library
'n = number of equations
'h = step size for integration
'x = independent variable
'y = vector of dependent variables
'prm = vector parameters
ReDim ccc(N), fff(N)
ReDim k1(N), k2(N), k3(N), k4(N)
ReDim y2(N), y3(N), y4(N)
Dim muda1, muda2, muda3, muda4 As Double
Dim I As Integer
'Calculation of k1
muda1 = dydx(x, y, prm, fff)
For I = 1 To N: k1(I) = fff(I): Next
'Calculation of k2
For I = 1 To N: y2(I) = y(I) + 0.5 * h * k1(I): Next
muda2 = dydx(x + h / 2, y2, prm, fff)
For I = 1 To N: k2(I) = fff(I): Next
'Calculation of k3
For I = 1 To N: y3(I) = y(I) + 0.5 * h * k2(I): Next
muda3 = dydx(x + h / 2, y3, prm, fff)
For I = 1 To N: k3(I) = fff(I): Next
'Calculation of k4
```

```
For I = 1 To N: y4(I) = y(I) + h * k3(I): Next
muda4 = dydx(x + h, y4, prm, fff)
For I = 1 To N: k4(I) = fff(I): Next
'New values of the dependent variables
For I = 1 To N
  ccc(I) = y(I) + (h / 6) * (k1(I) + 2 * k2(I) + 2 * k3(I) + k4(I))
Next I
For I = 1 To N
  y(I) = ccc(I)
Next I
rk4a = 0
End Function
Private Function dydx(xx, yy, prm, fff)
Dim xxx, u, v, g, y, lam, L As Double
xxx = yy(1)
u = yy(2)
g = prm(3)
L = prm(4)
' Work on fff(1)
' Calculation of lam
y = -Sqr(L^2 - xxx^2)
v = -u * xxx / y
lam = (g * y - u ^ 2 - v ^ 2) / L ^ 2
fff(1) = u
fff(2) = lam * xxx
dydx = 0
End Function
```