

A Unit Operations Laboratory Experiment Combined with Computer Simulation to Teach PID Controller Tuning

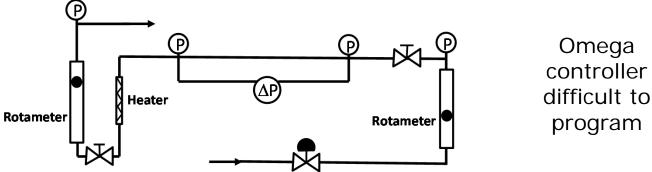
William M. Clark Chemical Engineering Department Worcester Polytechnic Institute

Curriculum

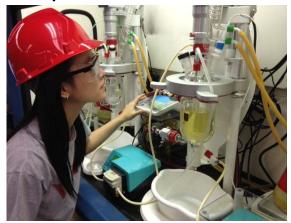
3 Projects 12 of 14 Core Courses

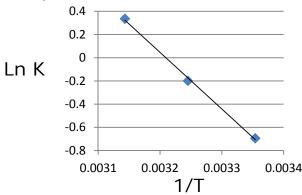
Term —→ Year ↓	Α	В	С	D
First Year		Intro to ChE		
Sophomore HUA Project	Chemical Engineering Fundamentals	Elementary Chemical Processes	Applied Thermodynamics	Advanced Chemical Processes
Junior Interdisciplinary Project	Fluid Mechanics	Heat Transfer	Mass Transfer	Kinetics and Reactor Design
Senior	Unit Operations Laboratory I	Unit Operations Laboratory II	Process Control	Applied Math
Research Project	Process Design and Economics	<u>Capstone</u> <u>Design</u>	Worcester Polytec	hnic Institute

Motivation

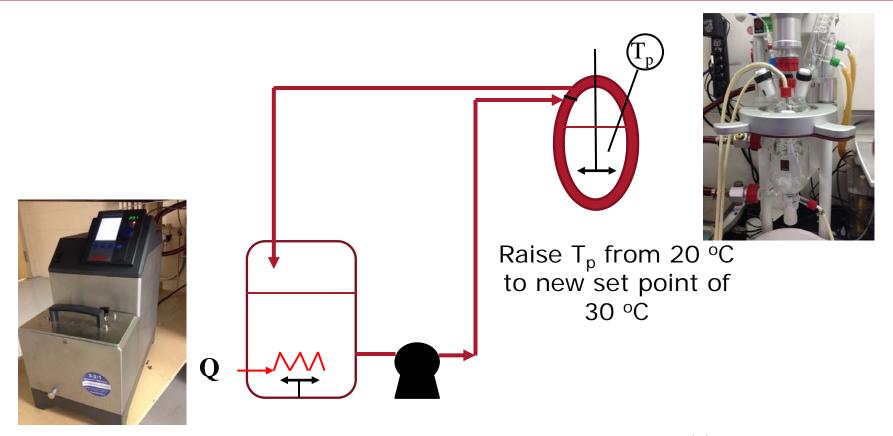

- Only 50 % of student took process control class
- We and ABET wanted more exposure to control in the curriculum

Tim Wescott, "PID Without a PhD", Embedded Systems Programming, October, 2000, 86-108.


"PID (proportional, integral, derivative) control is not as complicated as it sounds. Follow these simple implementation steps for quick results."


Process Control in UO Lab?

- Computer control of a heat exchanger no longer works
- T control for oven on packed bed reactor experiment
- Control of in-line heater in air flow experiment


Temperature control of biodiesel experiment batch reactor

Worcester Polytechnic Institute

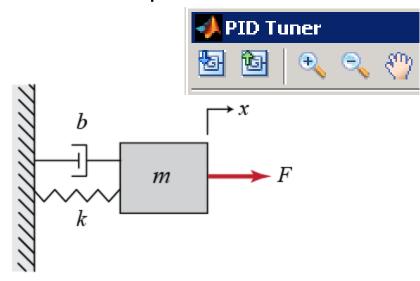
Temperature Control of Batch Reactor

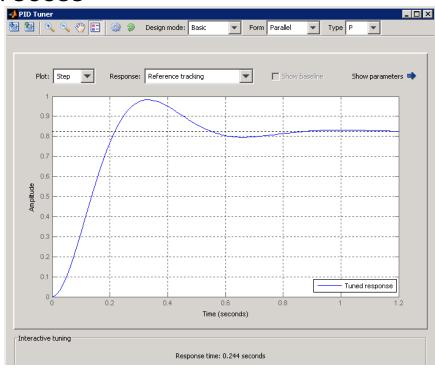
$$Q(t) = Q_o \left[K_p E(t) + K_i \int_0^t E(t) dt + K_d \frac{dE(t)}{dt} \right]$$

$$E(t) = T_{sp} - T_p$$

Temperature Control of Batch Reactor

Limitations


- 30 min to heat reactor, 30 minutes to cool again
- Limited range of applicable control parameters before boiling or freezing of water
- Unable to determine ultimate gain for sustained oscillations to test tuning methods


Ziegler-Nichols Kp = 0.45 KuKi = 1.2 / Pu

MATLAB PID Tuner Application

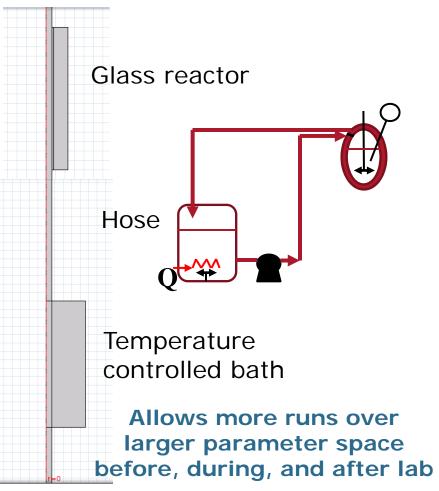
MATLAB PID Tuner Application with University of Michigan tutorial: http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction §ion=ControlPID#28

- Good learning tool
- Mass, spring, damper not ChE process
- Transfer function based analysis
- Not "lab experiment"

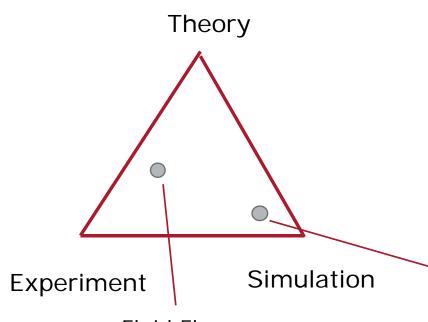
COMSOL Multiphysics Model of Reactor

Captures essential physics of the process

- 2-D axial symmetry
- Hose outlet connects to inlet via periodic b.c.
- Turbulent flow, k-ε model
- Coupled with energy balance
- Q(t) is volume heat source in temperature bath


$$Q(t) = Q_o \left[K_P E(t) + K_I \int_0^t E(t) dt + K_D \frac{dE(t)}{dt} \right]$$

Estimated:


- Flow rate, hose, bath, and jacket volumes
- Heat transfer coefficients
- Heat loss

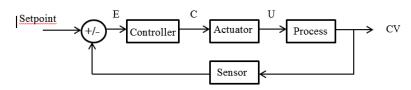
Assumed:

 Q_0 cooling = - Q_0 heating

COMSOL Multiphysics in Lab

Fluid Flow
Heat Exchanger
Membrane
Absorber
Packed Bed Reactor

As Pre-Lab Exercise


Simulation

- brings equations to life
- provides visualization
- details of velocity, temperature, pressure, concentration, etc. inside equipment

PID Control As Lab Exercise

Lab Description and Objectives

Brief introduction to practical aspects of process control and PID controller tuning methods

PID control

$$Q(t) = Q_o \left[K_P E(t) + K_I \int_0^t E(t) dt + K_D \frac{dE(t)}{dt} \right]$$

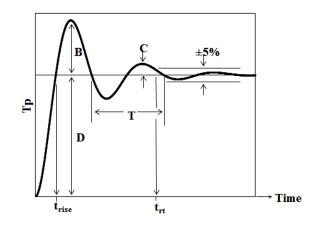


Figure 5. Response for an under damped controlled process [1].

Table 1. Definition of terms in process under damped response.

Tuble 1. Definition of terms in process under dumped response.				
Term	Definition			
Rise time	t_{ris} , the time required for T_p to first reach T_{sp}			
Overshoot	B/D			
Decay ratio	C/B, ratio of height of successive peaks			
Period of oscillation	T, time for a complete cycle			
Response time (settling time)	t_{rt} , time required for response to remain within			
	$+/-5\%$ of T_{sp} , i.e. T_{sp} +/- 0.05 T_{sp} .			

$$IAE = \int_0^\infty |E(t)| dt$$

Lab Description and Objectives

Table 2. Ziegler-Nichols and Tyreus-Luyben PID Controller Settings

Tuning Methods

	Ziegler-Nichols			Tyreus-Luyben		
Controller	K_{P}	K_{I}	K_{D}	K_{P}	K_{I}	K_{D}
P	$0.5~\mathrm{K_U}$	-	-	-NA-	-NA-	-NA-
PI	$0.45~\mathrm{K_U}$	$1.2/P_{\rm U}$	-	$0.31 \ K_{\rm U}$	$0.45/P_{\rm U}$	-
PID	0.6 K _U	2/P _U	P _U /8	0.45 K _U	$0.45/P_{\rm U}$	P _U /6.3

Riggs method

Objectives:

Before going to lab:

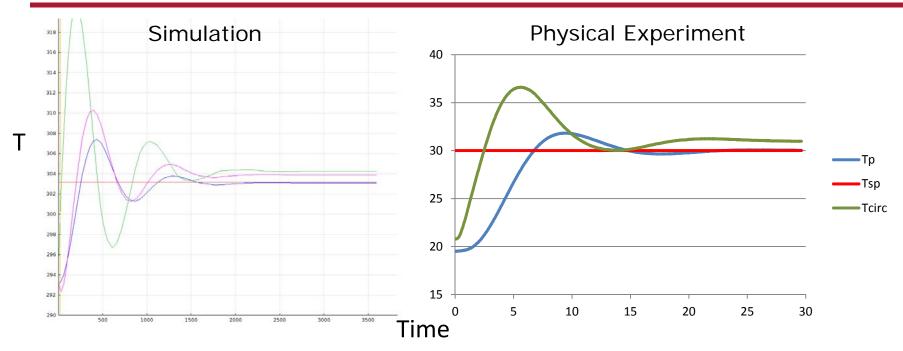
- 1. Study background material and tutorial on the COMSOL simulation
- Use simulation to study P-only control. Discover the effect of changing P.

During the lab:

- 1. Use simulation to find Ku and Pu
- 2. Use simulation to study Z-N, T-L, and Riggs tuning methods
- 3. Use simulation to discover effect of Ki and Kd
- 4. Evaluate IAE for each run and seek to minimize IAE
- 5. Run at least 3 physical experiments to demonstrate effect of changing parameters Kp and Ki

Lab Description and Objectives

Objectives:

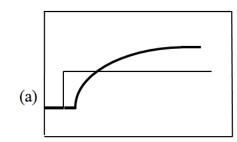

After the lab:

- 1. Use simulation as needed to understand effect of Kp, Ki, and Kd
- 2. Find best parameters that give lowest IAE and or "best" control
- 3. Written report to include:
- Explanation of the main effect of each parameter,
- Critique of the three tuning methods studied,
- Discussion of the physical experiment results,
- Parameters that gave lowest IAE or "best" control

Contest with promise of a "prize" for group that found the lowest IAE

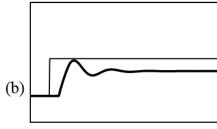
Many groups already found Ku and Pu and "discovered" or demonstrated the effect of Ki and Kd, as well as Kp, at the pre-lab stage

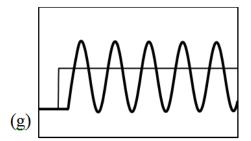
Results

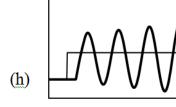

- Most correctly identified the main effect of Kp, Ki, and Kd, but some failed to see the interdependence
- Some expected Z-N and/or T-L to give optimal results without further refinement
- Some expected the simulation to be perfect
- Many enjoyed the competition to find the lowest IAE

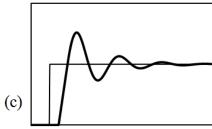
Assessment: Pre / Post Quiz

1. Which figure above looks like a typical open-loop control response curve?

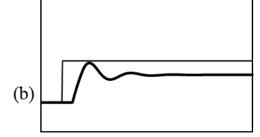

- (b)
- (f)
 - (h)

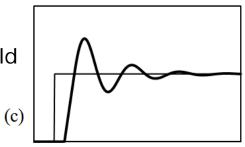



3. When using the Ziegler-Nichols tuning method, the closed-loop response curve used for determining the ultimate gain should look like which figure above?

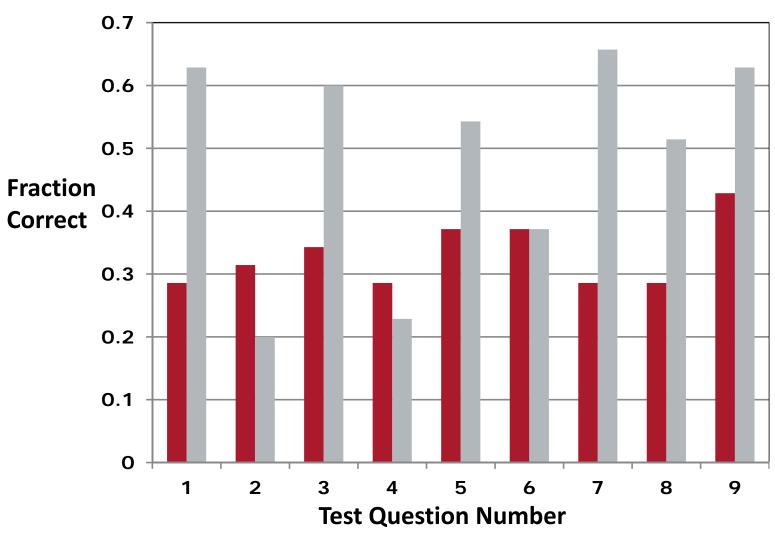


- (e)
- (g)
- (h)





Assessment: Pre / Post Quiz


- 7. Regarding a setpoint change and a PID process controller, the primary benefit of increasing the proportional control parameter is
- (a) increasing the speed of the response
- (b) eliminating offset of the response
- (c) reducing the oscillatory nature of the response
- (d) increasing the setpoint

- 4. When using a PID controller for a set point change, to change the response from figure (b) to figure (c) you should
- (a) increase the proportional control parameter, K_P
- (b) increase the integral control parameter, K_I
- (c) increase the derivative control parameter, $K_{\rm D}$
- (d) increase all three parameters

Assessment: Pre / Post Quiz

Assessment: Attitude Survey

Question	a	b	c	d	e
1. If you were to do this again, would you rather run:	only physical experiments	only simulations	one physical experiment and many simulations	3 physical experiments and many simulations	more than 3 experiments and fewer simulations
	3 %	3 %	22 %	53 %	19 %
2. Using the simulation software was:	very difficult	difficult	neither difficult nor easy	easy	very easy
	0 %	0 %	44 %	42 %	14 %
3. Simulation helped me to understand PID control:	not at all	just a little	somewhat	much	very much
	0 %	0 %	28 %	53 %	19 %
4. Simulation helped me to understand PID tuning methods:	not at all	just a little	somewhat	much	very much
	0 %	3 %	44 %	30 %	22 %

Conclusion

- Experiment combined three or four physical experiments with extensive computer simulations,
- Discovered the main effect of proportional, integral, and derivative control parameters,
- Evaluated three parameter tuning methods,
- Obtained "optimal" control by minimizing integral absolute error,
- New experiment was well received by the students,
- Some wanted more physical experiments and to bring the simulation and experiment in closer agreement,
- Interesting, enjoyable, and effective way to teach practical aspects of process control.

Enrollment in our second semester control course went from < 50 % to > 66 % of seniors after this lab was introduced.

ABET visit result not final but preliminary indications are good.