# The Chemical Akzo Nobel Problem and VBA<sup>TM</sup>

Edward M. Rosen
EMR Technology Group, Chesterfield, Mo 63017

#### Introduction

The Chemical Akzo Nobel problem is a stiff system of 6 non-linear DAEs (Differential Algebraic Equations) of index 1. A solution<sup>[1]</sup> is presented by the PSIDE-1 Solver<sup>[2]</sup> written in FORTRAN. It is of interest to compare that solution to a VBA<sup>TM</sup> solution which is the subject of this communication.

For this problem VBA is attractive for the following reasons:

- 1. Most industry (and academia) has Excel of which VBA is part. No additional software is required.
- 2. VBA files can be transferred to other VBA users .
- 3. For small problems (like this one) speed of execution is not an issue.
- 4. Spreadsheet output allows easy access to data for graphing.

### **Origin of the Problem**

The problem originates from Akzo Nobel Central Research in Arnhem, The Netherlands. It describes a chemical process, in which 2 species, FLB and ZHU, are mixed, while carbon dioxide is continuously added. The resulting species of importance is ZLA. The names of the chemical species are fictitious.

# **Mathematical Description of the Problem**

The reactions are given by:

2 FLB + ½ CO2 
$$\stackrel{k_1}{\rightarrow}$$
 FLBT + H2O

ZLA + FLB  $\stackrel{k_2/K}{\Longleftrightarrow}$  FLBT + ZHU

FLB + 2 ZHU + CO<sub>2</sub>  $\stackrel{k_3}{\rightarrow}$  LB + nitrate

FLB.ZHU + ½ CO<sub>2</sub>  $\stackrel{k_4}{\rightarrow}$  ZLA + H<sub>2</sub>O

FLB + ZHU  $\Leftrightarrow$  FLB.ZHU

The rate equations for each reaction:

$$r_1 = k_1 [FLB]^4 [CO_2]^{1/2}$$
 $r_2 = k_2 [FLBT] [ZHU]$ 
 $r_3 = k_2/K [FLB] [ZLA]$ 
 $r_4 = k_3 [FLB] [ZHU]^2$ 
 $r_5 = k_4 [FLB.ZHU]^2 [CO_2]^{1/2}$ 
 $K_s = [FLB.ZHU]/( [FLB][ZHU] )$  (1)

The last equation describes an equilibrium.

The inflow of carbon dioxide per volume unit is denoted by Fin and satisfies

$$F_{in} = kIA (p(CO_2)/H - [CO_2])$$

The rate of change of concentrations of each chemical species depends on the rate equations:

FLB'[t] = 
$$-2r_1 + r_2 - r_3 - r_4$$
  
 $CO_2'[t] = -0.5 r_1 - r_4 - 0.5 r_5 + F_{in}$   
FLBT'[t] =  $r_1 - r_2 + r_3$   
ZHU'[t] =  $-r_2 + r_3 - 2r_4$   
ZLA'[t] =  $r_2 - r_3 + r_5$  (2)

Reaction parameters for each of the reactions are given Table 1:

Initial values are: FLB [0] = 0.444,  $CO_2[0] = 0.00123$ , FLBT[0] = 0, ZHU[0] = 0.007, ZLA[0] = 0

| Paramete            | rs for Chemical | Akzo Nobel Problem |
|---------------------|-----------------|--------------------|
| Symbol              | Value           |                    |
|                     |                 |                    |
| $k_1$               | 18.7            |                    |
| k <sub>2</sub>      | 0.58            |                    |
| k <sub>3</sub>      | 0.09            |                    |
| k <sub>4</sub>      | 0.42            |                    |
| K                   | 34.4            |                    |
| KIA                 | 3.3             |                    |
| Ks                  | 115.83          |                    |
| p(CO <sub>2</sub> ) | 0.9             |                    |
| Н                   | 737             |                    |

Table 1. Parameters for the Chemical Akzo Nobel Problem

### **Numerical Solution of the Problem**

The integration of equations (2) is carried out with a fourth order Runge-Kutta routine implemented in VBA<sup>TM</sup> function Integ (Appendix I). Five equations are integrated as the product  $K_s$  FLB[t] ZHU[t] is substituted for FLT.ZHU[t] in equation (1) making the system index 0.

Table 2. consists of the first 10 rows of the spreadsheet developed in this study. A stepsize of 0.01 min is chosen for the integration step size (many larger step sizes failed). The first row (row 7) shows the starting values for FLB,  $CO_2$  and ZHU. The value of FLB.ZHU[t] is calculated from the product  $K_s$  FLB[t] ZHU[t].

The first 6 columns of row 8 are highlighted (for the output) and the following is entered:

=Integ(\$A7, \$B7:\$F7, \$I\$6) with Ctrl+Shft+Enter.

The integration is carried out (in function integ) and the integrated time (\$A8) and values for FLB to ZLA (\$B8:\$F8) are inserted into the highlighted output area. The \$I\$6 specifies the first element of the parameters (Table 1) which start (as a column) at location \$I\$6.

# After row 8 is completed the next entries up to row 18007 are copied from row 8.

| Reaction | System |                 |        |        |        |         |   |        |                  |    |
|----------|--------|-----------------|--------|--------|--------|---------|---|--------|------------------|----|
| Α        | В      | С               | D      | E      | F      | G       | Н | I      | J                | K  |
|          |        |                 |        |        |        |         |   |        |                  |    |
| Time     | FLB    | CO <sub>2</sub> | FLBT   | ZHU    | ZLA    | FLB.ZHU |   | prm    |                  |    |
| min      |        |                 |        |        |        |         |   | 5.00   | N                | 1  |
| 0.000    | 0.4444 | 0.00123         | 0.0000 | 0.0070 | 0.0000 | 0.3603  |   | 0.01   | h                | 2  |
| 0.010    | 0.4439 | 0.00110         | 0.0002 | 0.0070 | 0.0000 | 0.3599  |   | 18.70  | k1               | 3  |
| 0.020    | 0.4434 | 0.00098         | 0.0005 | 0.0070 | 0.0000 | 0.3595  |   | 0.58   | k2               | 4  |
| 0.030    | 0.4430 | 0.00087         | 0.0007 | 0.0070 | 0.0001 | 0.3592  |   | 0.09   | k3               | 5  |
| 0.040    | 0.4426 | 0.00077         | 0.0009 | 0.0070 | 0.0001 | 0.3588  |   | 0.42   | k4               | 6  |
| 0.050    | 0.4422 | 0.00069         | 0.0011 | 0.0070 | 0.0001 | 0.3585  |   | 34.40  | K                | 7  |
| 0.060    | 0.4418 | 0.00061         | 0.0013 | 0.0070 | 0.0001 | 0.3582  |   | 3.30   | klA              | 8  |
| 0.070    | 0.4415 | 0.00054         | 0.0015 | 0.0070 | 0.0001 | 0.3579  |   | 115.83 | Ks               | 9  |
| 0.080    | 0.4412 | 0.00047         | 0.0016 | 0.0070 | 0.0001 | 0.3577  |   | 0.90   | pCO <sub>2</sub> | 10 |
| 0.090    | 0.4409 | 0.00042         | 0.0018 | 0.0070 | 0.0001 | 0.3574  |   | 737.00 | Н                | 11 |

Table 2. First 10 rows of the spreadsheet

The value of  $CO_2$  drops very rapidly before it rises steeply. Figure 1 is a plot of the concentration values of  $CO_2$  during the first 0.3 minutes.

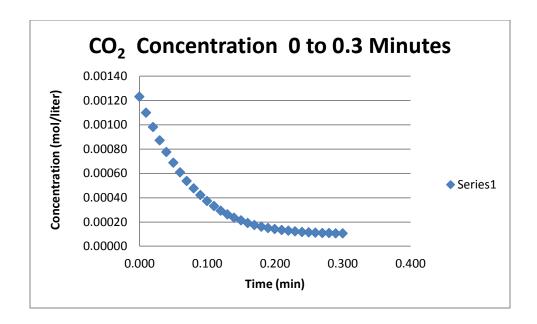



Figure 1. Concentration values of CO<sub>2</sub> 0 to 0.3 Minutes

Since it is desired to determine the solution out to 180 minutes, some 18000 time increments are need (stepsize 0.01 min).

### **Graphs of the solution**

Since the number of spreadsheet increments are more than can be plotted, just every 144 points were selected for graphing (Appendix II). Function TRY (Appendix II) places the selected points in columns AA to AG (not shown).

Plots of the 126 selected points for each component are shown in Figures 2 to 7.

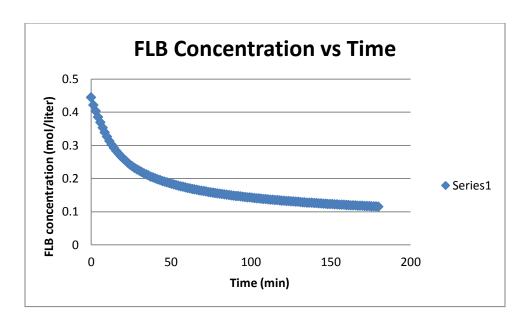



Figure 2. FLB Concentration vs Time

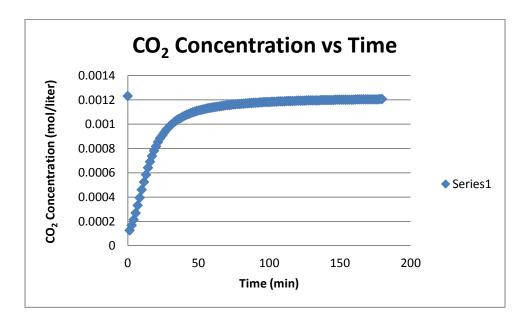



Figure 3. CO<sub>2</sub> Concentration vs Time

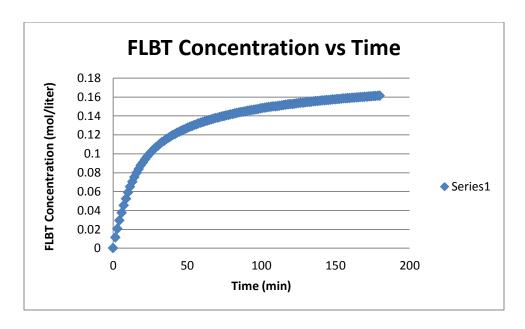



Figure 4. FLBT Concentration vs Time

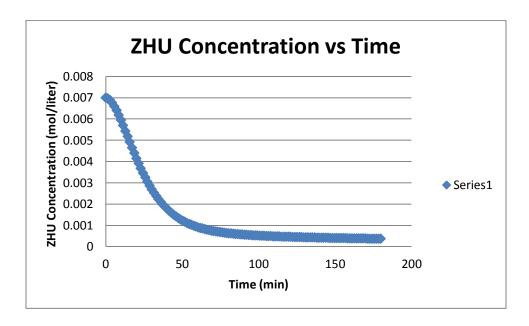



Figure 5. ZHU Concentration vs Time

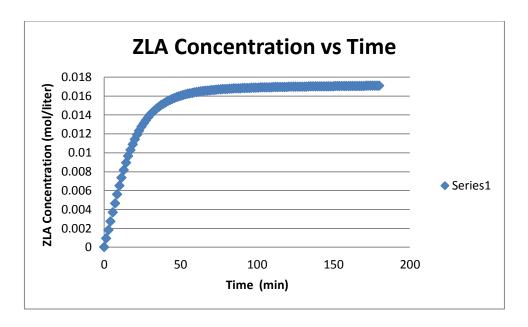



Figure 6. ZLA Concentration vs Time

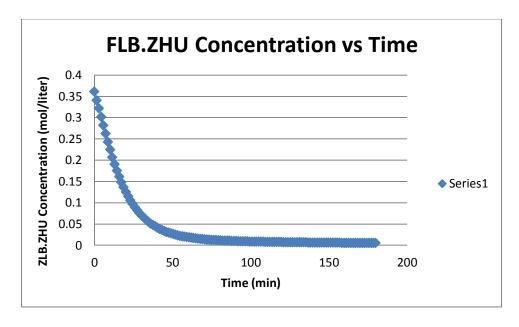



Figure 7. FLB.ZHU Concentration vs Time

### **Conclusions**

Table 3. compares the results of the (PSIDE-1) FORTRAN and  $VBA^{TM}$  integrations after 180 minutes. There are only minor differences.

A possible downside of the VBA<sup>TM</sup> solution is the large size of the spreadsheet (18,007 rows).

The Chemical Akzo Nobel Problem is one of a number of problems designed to test various IVP (Initial Value Problem) codes. The test problems and solutions are detailed in [3].

| Concentrations After 180 min |                  |                   |  |  |
|------------------------------|------------------|-------------------|--|--|
| Component                    | PSIDE-1*         | $VBA^{TM}$        |  |  |
|                              |                  |                   |  |  |
| FLB                          | 1.15079E-01      | 1.15084E-01       |  |  |
| CO <sub>2</sub>              | 1.20383E-03      | 1.20383E-03       |  |  |
| FLBT                         | 1.61156E-01      | 1.61354E-01       |  |  |
| ZHU                          | 3.65615E-04      | 3.65004E-04       |  |  |
| ZLA                          | 1.70801E-02      | 1.70725E-02       |  |  |
| FLB.ZHU                      | 4.87353E-03      | 4.86558E-03       |  |  |
|                              |                  |                   |  |  |
| *Reference [1                | ] gives concentr | rations to 16 sig |  |  |
|                              |                  |                   |  |  |

Table 3. Comparison of FORTRAN and VBA<sup>TM</sup> Solutions After 180 Minutes

### References

- 1. http://www.dm.uniba.it/~testset/report/chemakzo.pdf
- 2. http://www.dm.uniba.it/~testset/solvers/pside.php
- 3. http://www.dm.uniba.it/~testset

# **Appendix I**

**Option Explicit** 

Private Function integ(x, y, prm)

Dim N, IR, NN, I As Integer

Dim h, xx As Double

N = prm(1)

NN = N + 1

ReDim yy(1 To N) As Double

ReDim ddd(1 To NN)

h = prm(2)

xx = x

For I = 1 To N

yy(I) = y(I)

Next

IR = rk4a(N, h, xx, yy, prm)

xx = xx + h

ddd(1) = xx

For I = 2 To NN

ddd(I) = yy(I - 1)

Next I

integ = ddd

**End Function** 

Public Function rk4a(N, h, x, y, prm)

'Modified from Pedro L. Claveria abril/2002

'based in EMR Technology Group Library

'n = number of equations

'h = step size for integration

'x = independent variable

'y = vector of dependent variables

'prm = vector parameters

ReDim ccc(N), fff(N)

ReDim k1(N), k2(N), k3(N), k4(N)

ReDim y2(N), y3(N), y4(N)

Dim muda1, muda2, muda3, muda4 As Double

Dim I As Integer

'Calculation of k1

muda1 = dydx(x, y, prm, fff)

For I = 1 To N: k1(I) = fff(I): Next

'Calculation of k2

For I = 1 To N: y2(I) = y(I) + 0.5 \* h \* k1(I): Next

muda2 = dydx(x + h / 2, y2, prm, fff)

For I = 1 To N: k2(I) = fff(I): Next

'Calculation of k3

For I = 1 To N: y3(I) = y(I) + 0.5 \* h \* k2(I): Next

muda3 = dydx(x + h / 2, y3, prm, fff)

For I = 1 To N: k3(I) = fff(I): Next

'Calculation of k4

For I = 1 To N: y4(I) = y(I) + h \* k3(I): Next

muda4 = dydx(x + h, y4, prm, fff)

For I = 1 To N: k4(I) = fff(I): Next

'New values of the dependent variables

For I = 1 To N

$$ccc(I) = y(I) + (h / 6) * (k1(I) + 2 * k2(I) + 2 * k3(I) + k4(I))$$

Next I

For I = 1 To N

$$y(I) = ccc(I)$$

Next I

rk4a = 0

**End Function** 

Private Function dydx(xx, yy, prm, fff)

Dim r1, r2, r3, r4, r5, Fin, xxx As Double

'prm (1) = N

'prm (2) = h

'prm (3) = k1

'prm (4) = k2

'prm (5) = k3

'prm (6) = k4

'prm(7) = K

'prm (8) = k1A

$$Fin = prm(8) * ((prm(10) / prm(11)) - yy(2))$$

$$r1 = prm(3) * (yy(1) ^ 4) * (yy(2) ^ 0.5)$$

$$r2 = prm(4) * yy(3) * yy(4)$$

$$r3 = (prm(4) / prm(7)) * yy(1) * yy(5)$$

$$r4 = prm(5) * yy(1) * (yy(4) ^ 2)$$

$$xxx = prm(9) * yy(1) * yy(4)$$

$$r5 = prm(6) * (xxx ^ 2) * (yy(2) ^ 0.5)$$

$$fff(1) = -2 * r1 + r2 - r3 - r4$$

$$fff(2) = -0.5 * r1 - r4 - 0.5 * r5 + Fin$$

$$fff(3) = r1 - r2 + r3$$

$$fff(4) = -r2 + r3 - 2 * r4$$

$$fff(5) = r2 - r3 + r5$$

$$dydx = 0$$

**End Function** 

# Appendix II

Next J

**End Function** 

```
Private Function TRY()

'Generation of Selected Plot Points

Dim GG(7), J, K, L, JJ As Integer

JJ = 1

For J = 7 To 18007 Step 144

For K = 1 To 7

GG(K) = Cells(J, K)

Next K

For L = 1 To 7

Cells(JJ, 26 + L) = GG(L)

Next L

JJ = JJ + 1
```