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Why Process Optimization?

• Equipment and Flowsheet Design
• Process Operations, Transients and Upsets 
• Parameter Estimation and Model Discrimination

• Optimization Gives Better Results than with “Experience”
• Consistent Results among all Practitioners

Case Study 
Improvement

(D)AE Model
c(z, z’, u, p, t) = 0

p                 u(t)

Optimization 
Algorithms

Optimization:  find the best solution to this 
process within constraints.

Objective Function: quantitative indicator 
of good solution, e.g., cost, yield, profit…, 
or multiple objectives!

Decision Variables:  variables that 
influence process behavior and can be 
adjusted

Often done by trial and error (through 
case study). 

Systematic approach to this task?
- make this task as efficient as possible.
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Why Process Optimization?

• Equipment and Flowsheet Design
• Process Operations, Transients and Upsets 
• Parameter Estimation and Model Discrimination

• Optimization Gives Better Results than with “Experience”
• Consistent Results among all Practitioners
• Reduce Solution Time by Orders of Magnitude
• Support and Enhance Process Understanding 

Optimization 
Algorithms

(D)AE Model
c(z, z’, u, p, t) = 0

p                 u(t)

Optimization
Min f(x)
s.t. x ε X

(D)AE Model
c(x) = 0
x={z, z’, u, p, t}



Problem: Minx f(x)
s.t. g(x) ≤ 0

h(x) = 0
where:

f(x) - scalar objective function
x - n vector of variables

g(x) - inequality constraints, m vector
h(x) - meq equality constraints.

Sufficient Condition for Global Optimum
- f(x) must be convex, and
- feasible region must be convex,

i.e.  g(x) are all convex
h(x) are all linear

Except in special cases, there is no guarantee that a local optimum is global
if sufficient conditions are violated.

Constrained Optimization Problems
With Smooth Functions

(Nonlinear Programming)



7

Characterization of Constrained Optima
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What conditions characterize a (locally) optimal solution?

Unconstrained Local Minimum
Necessary Conditions

∇f (x*) = 0
pT∇2f (x*) p ≥ 0   for  p∈ℜn

(positive semi-definite)

Unconstrained Local Minimum
Sufficient Conditions

∇f (x*) = 0
pT∇2f (x*) p > 0   for p∈ℜn

(positive definite)
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Optimal solution for inequality constrained problem

Min f(x)
s.t .   g(x) ≤ 0

Analogy:  Ball rolling down valley pinned by fence
Note:  Balance of forces (∇f, ∇g1)
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Optimal solution for general constrained problem

Problem: Min f(x)
s.t. g(x) ≤ 0

h(x) = 0
Analogy:  Ball rolling on rail pinned by fences
Balance of forces:  ∇f, ∇g1, ∇h
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Necessary First Order Karush Kuhn - Tucker Conditions

∇ L (x*, u, v) = ∇f(x*) + ∇g(x*) u + ∇h(x*) v = 0
(Balance of Forces)
u ≥ 0 (Inequalities act in only one direction)
g (x*) ≤ 0,  h (x*) = 0 (Feasibility)
uj gj(x*) = 0 (Complementarity: either gj(x*) = 0 or  uj = 0)
u, v are "weights" for "forces," known as KKT multipliers, shadow 
prices, dual variables

“To guarantee that a local NLP solution satisfies KKT conditions, a constraint
qualification is required. E.g., the Linear Independence Constraint Qualification
(LICQ) requires active constraint gradients, [∇gA(x*) ∇h(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) Second Order Conditions
- Positive curvature in "constraint" directions.
- pT∇ 2L (x*) p ≥ 0  (pT∇ 2L (x*) p > 0) 

where p are the constrained directions: ∇gA(x*)Tp = 0, ∇h(x*)Tp = 0

Optimality conditions for local optimum
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Single Variable Example of  KKT Conditions

-a a

f(x)

x

Min (x)2 s.t. -a ≤ x ≤ a, a > 0
x* = 0 is seen by inspection

Lagrange function :
L(x, u) = x2 + u1(x-a) + u2(-a-x)

First Order KKT conditions:
∇L(x, u) = 2 x + u1 - u2 = 0
u1 (x-a) = 0
u2 (-a-x) = 0
-a ≤ x ≤ a u1, u2 ≥ 0

Consider three cases:
•     u1 ≥ 0,  u2 = 0 Upper bound is active, x = a, u1 = -2a, u2 = 0
• u1 = 0,  u2 ≥ 0 Lower bound is active, x = -a, u2 = -2a, u1 = 0
• u1 = u2 = 0 Neither bound is active, u1 = 0, u2 = 0,  x = 0

Second order conditions (x*, u1, u2 =0) 
∇xxL (x*, u*) = 2 
pT∇xxL (x*, u*) p = 2 (Δx)2 > 0 
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Single Variable Example 
of  KKT Conditions - Revisited

Min -(x)2 s.t. -a ≤ x ≤ a, a > 0
x* = ±a is seen by inspection

Lagrange function :
L(x, u) = -x2 + u1(x-a) + u2(-a-x)

First Order KKT conditions:
∇L(x, u) = -2x + u1 - u2 = 0
u1 (x-a) = 0
u2 (-a-x) = 0
-a ≤ x ≤ a u1, u2 ≥ 0

Consider three cases:
•     u1 ≥ 0,  u2 = 0 Upper bound is active, x = a, u1 = 2a, u2 = 0
• u1 = 0,  u2 ≥ 0 Lower bound is active, x = -a, u2 = 2a, u1 = 0
• u1 = u2 = 0 Neither bound is active, u1 = 0, u2 = 0,  x = 0

Second order conditions (x*, u1, u2 =0) 
∇xxL (x*, u*) = -2 
pT∇xxL (x*, u*) p = -2(Δx)2 < 0 

a-a

f(x)

x
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For x = a or x = -a, we require the allowable direction to satisfy the 
active constraints exactly. Here, any point along the allowable 
direction, x* must remain at its bound.

For this problem, however, there are no nonzero allowable directions 
that satisfy this condition. Consequently the solution x* is defined 
entirely by the active constraint. The condition: 

pT ∇xxL (x*, u*, v*) p  > 0
for the allowable directions, is vacuously satisfied - because there are 
no allowable directions that satisfy ∇gA(x*)T p  = 0. Hence, sufficient
second order conditions are satisfied.

As we will see, sufficient second order conditions are satisfied by linear 
programs as well.

Interpretation of Second Order Conditions
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Problem: Minx f(x)
s.t. g(x) ≤ 0

h(x) = 0
KKT Conditions: 

Stationarity 𝛻𝑓 𝑥 + 	𝛻𝑔 𝑥 𝑢 + 𝛻ℎ 𝑥 𝑣 = 0
Feasibility ℎ 𝑥 = 	0, 𝑔 𝑥 ≤0
Complementarity 0 ≤ 𝑢 ⊥ 𝑔(𝑥) ≤ 0

Nonlinear Programming Strategies

Almost like solving nonlinear equations
Except for Complementarity

Active Set Methods
(SQP, SLP, GRG)

Penalty/Barrier Methods
(IPOPT, KNITRO, LOQO)



Motivation:
• Take KKT conditions, expand in Taylor series about current point.
• Take Newton step (QP) to determine next point. 

Derivation – KKT Conditions
∇xL (x*, u*, v*) = ∇f(x*) + ∇gA(x*) u* + ∇h(x*) v* = 0

h(x*) = 0 
gA(x*) = 0, where gA are the active constraints.

Newton - Step

xx∇ L
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Requirements:
• ∇xxL must be calculated and should be bounded
• need to find correct active set gA
• need to choose good (and bounded) estimates of uk, vk

Successive Quadratic Programming (SQP)



0. Guess x0,  Set B0 = I (Identity). Evaluate  f(x0), g(x0) and h(x0).

1. At xk, evaluate ∇f(xk),  ∇g(xk), ∇h(xk).

2. If k > 0, update Bk using the BFGS Formula.
3. Solve: Mind ∇f(xk)Td  + 1/2 dTBkd

s.t. g(xk) + ∇g(xk)Td ≤ 0

h(xk) + ∇h(xk)Td = 0

If KKT error less than tolerance: ||∇L(x*)|| ≤ ε, ||h(x*)|| ≤ ε, 

||g(x*)+|| ≤ ε. STOP, else go to 4. 

4. Find α so that 0 < α ≤ 1 and ψ(xk + αd) < ψ(xk) sufficiently 

(Each trial requires evaluation of f(x), g(x) and h(x)).

5. xk+1 = xk + α d.  Set k = k + 1 Go to 2.

Basic SQP Algorithm
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SQP – Set up and solve quadratic program
• Evaluate functions and gradients at current point
• Extended Newton method on KKT conditions
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SQP – Set up and solve quadratic program
• Evaluate functions and gradients at current point
• Extended Newton method on KKT conditions



SQP Test Problem

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

Min x2
s.t. -x2 + 2 x1

2 - x1
3 ≤ 0

-x2 + 2 (1-x1)2 - (1-x1)3 ≤ 0
x* = [0.5, 0.375].



SQP Test Problem – First Iteration

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

Start from the origin (x0 = [0, 0]T) with B0 = I, form: 

Min d2 + 1/2 (d1
2 + d2

2)
s.t. d2 ≥ 0

d1 + d2 ≥ 1
d = [1, 0]T. with µ1 = 0 and µ2 = 1. 



1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

From x1 = [0.5, 0]T with B1 = I 
(no update from BFGS possible), form: 

Min d2 + 1/2 (d1
2 + d2

2)
s.t. -1.25 d1 - d2 + 0.375 ≤ 0

1.25 d1 - d2 + 0.375 ≤ 0
d = [0, 0.375]T with µ1 = 0.5 and µ2 = 0.5

x* = [0.5, 0.375]T is optimal

SQP Test Problem – Second Iteration



Barrier Methods for Large-Scale 
Nonlinear Programming
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Can generalize for
a ≤ x ≤ b 

⇒As  µ è 0,     x*(µ)  è x*           Fiacco and McCormick (1968)
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Example: Properties of Barrier Methods

Min (x+1)2 s.t. x ≥ 0



Example: Properties of Barrier Methods

Min (x+1)2 s.t. x ≥ 0

Min (x+1)2 – 𝜇 ln(x)

x(𝜇) = ½((1 + 2 𝜇)1/2 −1)

lim
6→8

x(𝜇) = 𝑥∗

𝜇=0.1

𝜇=0.02
𝜇=0.01
𝜇=0.05

-ln(x)

(x+1)2

(x+1)2 – 𝜇 ln(x)



Solution of the Barrier Problem

⇒Newton Directions (KKT System)
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Solution of the Barrier Problem

⇒Newton Directions (KKT System)
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IPOPT Algorithm – Features

Line Search Strategies for 
Globalization
- l2 exact penalty merit function
- augmented Lagrangian merit function
- Filter method (adapted and extended 
from Fletcher and Leyffer)

Hessian Calculation 
- BFGS (full/LM and reduced space)
- SR1 (full/LM and reduced space)
- Exact full Hessian (direct)
- Exact reduced Hessian (direct)
- Preconditioned CG 

Algorithmic Properties
Globally, superlinearly
convergent (Wächter and B., 
2005)

Easily tailored to different 
problem structures 

Freely Available
Eclipse License and COIN-OR 
distribution: 
http://www.coin-or.org

IPOPT 3.x: rewritten in C++

Solved on thousands of test 
problems and applications



Evolution of Gradient-Based (NLP) 
Algorithms & Tasks

’80s: Flowsheet optimization  
~ 100 variables and constraints  

’00s: Simultaneous dynamic optimization
over 1 000 000 variables and constraints

SQP

Barrier
(IPOPT)

’90s: Static real-time optimization (RTO) 
over 100 000 variables & constraints rSQP

‘10s: Sensitivity-based  dynamic on-line 
optimization for large NLPs: < 1 CPUs sIPOPT

The most efficient NLP tools now handle millions of 
variables and constraints with modest computational effort



Process Optimization 
Environments and NLP Solvers 

Black Box

Glass Box

Variables/Constraints
102 104 106

Simulation 
Models

Finite Differences

Exact First Derivatives

First & Second Derivatives, Sparse Structure

100

Compute
Efficiency

SQP
~10 STEs

rSQP
2-5 STEs

NLP Barrier
1 STE

DFO
> 100 STEs



Equation-Oriented Utopia for 
Process Optimization

• Glass	Box	Models	- Exact	Jacobians/Hessians	and	sparse	
equation	structure

• Fast	Newton-based	NLP	solvers
• NLP	sensitivity	(post-optimality	and	interpretation,	
multi-level	opt.,	…)

• EO-Modeling	Enables:
– Efficient	MINLP	Strategies
– Deterministic	Global	Optimization
– Robust	and	Stochastic	Optimization	for	Uncertainty



•Installed sensors provide an early warning of contamination

•System provides only a coarse measure of contamination time 
and location

•Desired: Accurate and fast time & location information

Early Warning Detection System 
Municipal Water Networks 

(Laird, B., 2005, 2006)



Collapsed Node Models

Plug Flow

Complete Mixing

No Reaction

Known Sources Contaminant Free

Time Dependent Mass Injections at All Nodes 
(Negligible Flow rates)

Decoupled Hydraulics and Water Quality 
Calculations 

Water Quality Model

Pipes, Valves, Pumps

Storage Tanks, Junctions
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Equation-Oriented Optimization Formulation
Node Concentrations & 

Injection Terms Only

Pipe Boundary 
Concentrations

Injection Terms Only

Only Constraints 
with Spatial 

Dependence
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Pipeline Simulation Techniques

Eulerian

Discretize in time and space

Track concentration at fixed points or 
volumes

Local process for simulation, but global 
treatment needed for simultaneous 
optimization

Lagrangian

Discretize in time alone

Track concentration of elements as 
they move 

Algorithmic in nature

Review of methods by Rossman and Boulos, 1996. 



Origin Tracking Algorithm

Known Hydraulics – Function of Time
Pipe Network PDEs Linear in Concentration
Pipe by Pipe PDEs 

• Efficient for Large Networks
• Convert PDEs to DAEs with variable time delays

Removes Need to Discretize in Space

Hydraulic
Simulator
(EPANET)

Formulation
ToolFlow 

demands
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Municipal Source Detection Example

Algorithm successful on over 1000 numerical tests with real municipal water 
networks

Links to existing water flow network simulator è variable time delays

Solution time < 2 CPU minutes for ~ 250,000 variables, ~45,000 degrees of 
freedom è Effective in a real time setting

Can impose unique solutions through an extended MIQP formulation (post-
processing phase)
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Municipal Source Detection Example

Algorithm successful on over 1000 numerical tests with real municipal water 
networks

Links to existing water flow network simulator è variable time delays

Solution time < 2 CPU minutes for ~ 250,000 variables, ~45,000 degrees of 
freedom è Effective in a real time setting

Can impose unique solutions through an extended MIQP formulation (post-
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How do we handle Uncertain Inputs?
Robust Optimization

Multi-Scenario Optimization



Min f0(d) + Σi fi(d, xi)
s.t. hi(xi, d) = 0, i = 1,… N

gi(xi, d) ≤ 0, i = 1,… N
r(d) ≤ 0 

Variables:
x: state (z) and decision (y) variables for each scenario
d: common variables (e. g. equipment parameters) used
δi: substitute for d in each period and add δi = d

Multi-scenario Optimization

Composite NLP
Min  Σi (fi(δi, xi) + f0(δi)/N) 
s.t. hi(xi, δi) = 0, i = 1,… N

gi(xi, δi) +si = 0, i = 1,… N
0 ≤ si, d – δi=0, i = 1,… N
r(d) ≤ 0



Parallel Schur-Complement Scalability
•Multi-scenario Optimization

– Single Optimization over many 
scenarios, performed on parallel 
cluster

Water Network Case Study
– 1 basic model

• Nominal design optimization
– 32 scenarios (operating data)

• Form individual blocks

•Determine Injection time profiles as 
common variables
•Characteristics

– 36,000 variables per scenario
– 600 common variables
– Solution with 1.2 x 106  variables

(20 CPU min)
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(20 CPU min)
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Decomposition in Parallel Structures

Optimization under Uncertainty
Multi-Scenario à Schur Complement

Dynamic Optimization
Block Tridiagonal à Cyclic Reduction

Nicholson et al. (2016)

Dynamic Optimization under Uncertainty
Block Tridiagonal with Multi-Scenario à

Nested Cyclic Reduction and Schur Complement
Gondzio and Grothey (2011)



The Next 15 – 25 Years
Giga-scale Process Optimization

Enabling Tools:
•Structured NLPs with billions of variables
•Friendly, Powerful and Intelligent Optimization Modeling 
Environments
•Distributed Optimization Solvers with Exploitable Large-
scale Structures
•Integrated with Advanced Computation Environments 
(Multi-core CPUs, GPUs…)
Applications:
•Dynamic Global Network Models
•Electric Grid
•Gas and Oil Pipelines
•Enterprise-Wide Dynamic, Real-time Optimization  



Extend Equation-Oriented Optimization 
to (Many) Discrete Decisions? 

Min Overall Objective
s.t. Conservation Laws

Performance Equations
Constitutive Equations
Phase and Chemical Equilibrium
Heat Integration
Process/Product Specifications

à Consider MPCCs derived from Bi-level Optimization



Extend Equation-Oriented Optimization 
to (Many) Discrete Decisions? 

Min Overall Objective
s.t. Conservation Laws

Performance Equations
Constitutive Equations
Process/Product Specifications

Minimize Gibbs Free Energy
(Phase/Chem. Equilibrium)

Minimize Utilities
(Heat Integration)

à Consider MPCCs derived from Bi-level Optimization



Bilevel Problems and NLP Reformulations

Min 
x,y

f (x,  y)

s.t. g(x,  y) ≤ 0,  h(x, y) =  0
     Min 

y
f (x,  y)

     s.t. g(x,  y) ≤ 0,  h (x, y) =  0

Formulation Guidelines
• Attempt to define regular, convex inner minimization problem 

(optimistic bilevel problems, Dempe, 2002)
• Require connected feasible regions for inner problem variables 

(no exclusive ORs!)
• How can this problem be solved?



Mathematical Programs with 
Complementarity Constraints (MPCC)

Min 
x,y

f (x,  y)

s.t. g(x,  y) ≤ 0,  h(x, y) =  0
     ∇y f (x,  y)+∇yg(x,  y)u+∇yh (x,  y)v = 0

      g(x,  y) ≤ 0,  h (x, y) =  0
      0 ≤ u ⊥ g(x,  y) ≤ 0

Formulation Guidelines
•Substitute optimality conditions as constraints for bilevel 
problem è need to solve “singular system”
•Poorly posed optimization problem, constraint 
qualifications violated



Solving MPCCs through NLP 
Reformulation – l1 penalty

Min 
x,y

f (x,  y)− uTg(x,  y)

s.t. g(x,  y) ≤ 0,  h(x, y) =  0
     ∇y f (x,  y)+∇yg(x,  y)u +∇yh (x,  y)v = 0

      g(x,  y) ≤ 0,  h (x, y) =  0
      0 ≤ u,   g(x,  y) ≤ 0

Formulation Guidelines
• Replace complementarity by penalty term and 

simple inequalities
• Well-posed optimization problem, constraint 

qualifications satisfied



Phase Equilibrium thru Complementarity 

F, Fc

Fc

Liquid Stream

Vapor Stream
zL, φ(zL)

zV, φ(zV)

Mass Balance + Necessary KKT conditions
Kamath, Grossmann, B., Comp. Chem. Eng. 2011; Dowling, B., Comp. Chem. Eng., 2014



CEOS Phase Equilibrium thru 
Complementarity

zL, φ(zL)

F, Fc

Fc

Liquid Stream

No Vapor 
Stream



Distillation: Complementarity Formulation
(Raghunathan, B, 2002; Kamath et al., 2010)

• Consists	of	Mass,	Equilibrium,	Summation	
and	Heat	(MESH)	equations

• Continuous	Variable	Optimization	
• number	of	trays	
• feed	location
• reflux	ratio	

• When	phases	disappear,	MESH	fails.
• Reformulate	phase	minimization,	

• embed	complementarity
• Model	dry	trays,	Vaporless	trays

• How	does	this	extend	to	distillation	
optimization?	



Distillation Optimization (MESH Model)
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Distillation Optimization (MESH Model)
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Distillation Results – Min Heat Duty
(Kamath et al., 2010)

x B,hk ≥ 0.9, xD,lk ≥ 0.9

x B,hk ≥ 0.8 

x B,hk ≥ 0.45 



Glass Box Optimization: 
Air Separation Units (Dowling, B., 2015)

Boiling pts (1 atm.)
•Oxygen: 90 K
•Argon: 87.5 K
•Nitrogen: 77.4 K

Feedstock (air) is free: dominant cost 
is compression energy

Multicomponent distillation with tight 
heat integration

Nonideal Phase Equilibrium: Cubic 
Equations of State

Phase conditions not known a priori
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Column
Cascade

Total 
Condenser

Partial 
Reboiler

Flash

Valve

Splitter

ASU Superstructure – Building the Column

• Complementarities 
replace discrete 
decisions

• Tray bypass models
• Continuous NLP



ASU NLP Superstructure 

• Glass Box strategy with nested NLPs
• Determines Final ASU Design:

Number of Trays / HX integration / P, T, Flows
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ASU Optimization 
ΔTmin = 1.5 K, 95% O2  purity LP Column

8% feed air
21 stages,1 bar
98% O2 recovery

HP Column
92% feed air
10 stages, 3.5 bar
98.4% pure N2 stream

• Balanced Reboiler/Condenser
• No heating and cooling, only power
• Typical NLP: 15534 variables, 261 

degrees of freedom
• MPCC bootstrapping process è 15 

CPU min (CONOPT/ GAMS) 
• 0.196 kWh/kg (86% comp efficiency)
• Superior to Commercial Designs



Process	Optimization	Based	on	O2 Purity
(~25%	energy	savings	in	literature	comparison)	
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The Next 15 – 25 Years
Multi-level Optimization Models

Enabling Tools

– Complementarity modeling platforms

– Advanced algorithms for MPCCs, discrete optimization and global 
optimization

– Global optimization models distributed locally through multi-level 
optimization 

Applications

– Discrete decisions in time and space through complementarities

– Phase changes and complex phenomena in pipelines, complex heat 
exchangers and reservoir models

– Enterprise-wide distributed Advanced Control, Real-time 
Optimization, Integration to Scheduling and Planning



• Optimization is much more than glorified case studies on 
simulation models

Exploit sparse, structured models
Embrace nonsmoothness, and physical transitions
Gain insights on optimal solution

• Solving larger optimization problems is not more expensive
Equation-based Modeling Utopia is close to reality 
Fast NLP tools, sensitivity
Powerful optimization platforms, even for on-line 
optimization

• Multilevel Optimization Extends Process Modeling 
Extend domain of solving problems 
Systematic exploration of discontinuous phenomena

• Huge Potential for Process Optimization Applications
Ongoing work (EO-Process Modeling, Surrogate Optimization) 
within PyOMO Optimization Framework and  NETL/Sandia/LBNL

Summary and Conclusions 


