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Overview
* Introduction and Motivation
~Why Optimize?
 Fundamentals of Nonlinear Programming

—Problem formulation and KKT conditions
—NLP algorithms and optimization models

» Large-scale Optimization Case Study
—Water Contaminant Source Detection
—High Performance Computing
* Multi-level Optimization
-~MPCC Formulations
—~ASU Case Study

 Conclusions and Future Steps
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Aﬁé Why Process Optimization?

* Equipment and Flowsheet Design
* Process Operations, Transients and Upsets
« Parameter Estimation and Model Discrimination

Optimization

Optimization: find the best solution to this

Algorithms

p u(t)

process within constraints.

Objective Function: quantitative indicator

of good solution, e.g., cost, yield, profit...,
or multiple objectives!

Decision Variables: variables that

(D)AE Model
c(z, 2 ,u,p,t)=0

influence process behaviorand can be
adjusted

Often done by trial and error (through
case study).

Systematic approach to this task?
- make this task as efficient as possible.

» Optimization Gives Better Results than with “Experience”
» Consistent Results among all Practitioners



* Equipment and Flowsheet Design

Aﬁﬁé Why Process Optimization?

* Process Operations, Transients and Upsets
» Parameter Estimation and Model Discrimination

Optimization

Algorithms

|

(D)AE Model
c(z, 2 ,u,p,t)=0

Optimization
Min f(x)
st.xeX

(D)AE Model
c(x) = 0
x={z, 7 ,u,p,t}

» Optimization Gives Better Results than with “Experience”

» Consistent Results among all Practitioners
* Reduce Solution Time by Orders of Magnitude
« Support and Enhance Process Understanding




AH“ Constrained Optimization Problems
e With Smooth Functions
(Nonlinear Programming)

Problem: Min, f(x)
s.t. g(x) =0
h(x) =0
where:

f(x) - scalar objective function

X - nvector of variables
g(x) - inequality constraints, m vector
h(x) - meq equality constraints.

Sufficient Condition for Global Optimum
- f(x) must be convex, and
- feasible region must be convex,
1.e. g(x)are all convex
h(x) are all linear
Except in special cases, there is no guarantee that a local optimum is global
if sufficient conditions are violated.




Characterization of Constrained Optima

Linear Program Linear Program

(Altemnate Optiman)
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<\
Min < 7
Mi n "

N

7

! —

Min

Nonconvex Objective
Multiple Optima

Nonconvex Region
Multiple Optimda



.\aIthat conditions characterize a (locally) optimal solution?
E}i(lzl\lli
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1 2 3 4 «, 5 6 7 8 9 10

Unconstrained Local Minimum Unconstrained Local Minimum
Necessary Conditions Sufficient Conditions
VI (x*)=0 Vi (x*)=0
p'V(x*)p=0 for pER" p'VAx*)p>0 for peER"

(positive semi-definite) (positive definite)



Aﬁﬁé Optimal solution for inequality constrained problem

I 0 - I J | 1 | |l | 1 I
-
L

Min {(x)
s.t. gx)=<0
Analogy: Ball rolling down valley pinned by fence
Note: Balance of forces (Vf, Vgi)



A@ Optimal solution for general constrained problem
ERING

Problem: Min f(x)
S.t. g(x)=<0
h(x)=0
Analogy: Ball rolling on rail pinned by fences
Balance of forces: Vf, Vgi,Vh

10



Optimality conditions for local optimum

Necessary First Order Karush Kuhn - Tucker Conditions

VL(x* u,v)= Vix*)+ Veg(x*)u+ Vh(x*)v =10

(Balance of Forces)

u = 0 (Inequalities act in only one direction)

g (x*) <0, h(x*)=0 (Feasibility)

u;g(x*) =0 (Complementarity: either g(x*)=0 or u;=0)

u, v are "weights" for "forces," known as KKT multipliers, shadow
prices, dual variables

“To guarantee that a local NLP solution satisfies KKT conditions, a constraint
qualification is required. E.g., the Linear Independence Constraint Qualification
(LICQ) requires active constraint gradients, [Vg,(x*) Vh(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) Second Order Conditions
- Positive curvature in "constraint" directions.
pIV2L (x*)p =0 (pTV L (x*)p > 0)
where p are the constrained directions: Vg,(x*)Ip = 0, Vh(x*)'p = 0

11



Min (x)° st.-as<x=<a,a>0
x* = 0 1s seen by inspection

Lagrange function :
L(x, u) = xX* + u;(x-a) + uy(-a-x)

First Order KK'T conditions:
VL(x,u)=2x+u;-u,=0
u; (x-a) =0

u, (-a-x) = 0

-a<x<a u;,u,=0

Consider three cases:

ﬁ(@ Single Variable Example of KKT Conditions
ERING

f(x)

e u, >0, u,=0 Upper bound is active, x = a, u,= -2a,u, = 0
e u, =0, u,=0 Lower bound is active, x = -a, u, = -2a,u, = 0
 u,=u,=0 Neither bound is active, u, =0, u, =0, x =0

Second order conditions (x*, u;, u, =0)
Vol (x*,u*) =2

pTV. L (x* u*)p=2(Ax)° >0

12



% Single Variable Example
of KKT Conditions - Revisited

Min -(x)? st.-a<x=<a,a >0 -a X a
x* = #a 1s seen by inspection

Lagrange function :
L(x,u) = -x* + u;(x-a) + u,(-a-x)

First Order KKT conditions: | |
VL(x,u)=-2x+u;-u,=0 I I
u; (x-a) =0

u,(-a-x) =0
-a<x=<a Uy, U, =0 f(x)

Consider three cases:

e u, >0, u,=0 Upper bound is active, x = a, u,= 2a,u, =0
e u, =0, u,=0 Lower bound is active, x = -a, u, = 2a,u, = 0
 u,=u,=0 Neither bound is active, u, =0, u, =0, x =0

Second order conditions (x*, u;, u, =0)
Vol (x*,u*) = -2
pTV. L (x* u*)p =-2(Ax)’ <0

13



Aﬁﬁé Interpretation of Second Order Conditions

For x = a or x = -a, we require the allowable direction to satisfy the

active constraints exactly. Here, any point along the allowable
direction, x* must remain at its bound.

For this problem, however, there are no nonzero allowable directions
that satisfy this condition. Consequently the solution x* 1s defined
entirely by the active constraint. The condition:

pT VL (x*, u*,v¥)p >0
for the allowable directions, 1s vacuously satisfied - because there are
no allowable directions that satisfy Vg ,(x*)’ p = 0. Hence, sufficient
second order conditions are satisfied.

As we will see, sufficient second order conditions are satisfied by linear
programs as well.

14



Aﬁﬁé Nonlinear Programming Strategies

Problem: Min, f(x)
s.t. g(x) =0
h(x) =0
KKT Conditions:
Stationarity Vi(x) + Vg(x)u+Vh(x)vr=20
Feasibility h(x)= 0,g(x) <0

Complementarity 0<ulgkx)<O0

Almost like solving nonlinear equations
Except for Complementarity

Active Set Methods Penalty/Barrier Methods
(SQP, SLP, GRG) (IPOPT, KNITRO, LOQO)

15



Motivation:
e Take KKT conditions, expand in Taylor series about current point.
e Take Newton step (QP) to determine next point.

Derivation — KKT Conditions

V.L(x* u* v*) = V(x*)+ Vga(x*) u* + Vh(x*)v* =0
h(x*) =0
gA(x*) = 0, where g, are the active constraints.

Newton - Step

VoL Vg Vh| [AX VL (x*, u*, v¥)]

Vg! 0 0| |Au| = - g, (x*)

vh 0 0 | [Av h(x*)
Requirements: -

« V..L must be calculated and should be bounded
e need to find correct active set g4

* need to choose good (and bounded) estimates of u¥, V&

ﬁhﬁ‘é Successive Quadratic Programming (SQP)



Basic SQP Algorithm

. Guess x, Set BY = I (Identity). Evaluate f{xY), g(x°) and h(x°).

. At XK, evaluate Vf(xK), Vg(x¥), Vh(xK).
. If k > 0, update B*using the BFGS Formula.
. Solve: Min,; VI(x*)'d + 1/2 d"B*d
s.t. g(xk) + Veg(x¥)Td < 0
h(x*) + Vh(x*)Td = 0
If KKT error less than tolerance: ||[VL(x*)Il < ¢, |[h(x*)|| < €,

|g(x*).|| = &. STOP, else go to 4.
. Find a so that 0 < a < 1 and y(x* + ad) < y(x*) sufficiently

(Each trial requires evaluation of f(x), g(x) and h(x)).

xk =xk + ad. Setk=k+ 1 Go to 2.




SQP - Set up and solve quadratic program

Evaluate functions and gradients at current point
Extended Newton method on KKT conditions

18



SQP - Set up and solve quadratic program

Evaluate functions and gradients at current point
Extended Newton method on KKT conditions

19



Ai%al
ERING

SQP Test Problem

1.2

Min X,
st. -X,+2x,2-%X°=<0
X +2 (1-x;)2- (1-x,)3 < 0
x*=10.5,0.375].




Aﬁﬁé SQP Test Problem - First Iteration

1.0
0.8 -

X2 i
0.6 - \

NN
0.4 -
0.2
0.0 T T T T T T T d
00 0.2 .4 ,”’ NIRENY 1.0 1.2

Start from the origin (x, = [0, 0]T) with BY = I, form:

Min d, + 1/2 (d/? + dy°)
st. d,=0
d; +d,=>1
d=1[1,0]".with u; =0 and u, = 1.



0 o0z 04 , 06 08 10 12
From x; = [0.5, 0]T with B! =1
(no update from BFGS possible), form:

Min d,+ 1/2 (d/? + dy)?)

st. -125d;,-d,+0375<0
125d,-d,+0375<0

d=[0,0375]"with u; = 0.5 and u, = 0.5
x* =[0.5,0.375]" is optimal



Ai%al
ERING

Barrier Methods for Large-Scale
Nonlinear Programming

min f(x)
xaR"
Original Formulation St C(X) =0 Can generalize for
x=0 asxsbh

n
Barrier min QOM(X) = f(X)— MEIHXI-
Approach xERT =1

st c(x)=0

As u 2 0, x*u = x* Fiacco and McCormick (1968)



Min (x+1)?s.t. x>0

-0.1 0.1 0.3 0.5 0.7 0.9 11



Min (x+1)?s.t. x>0
Min (x+1)2 = u In(x)
X(1) = Va((1+2 p)"2 1)
lim x(4) = x°

()



el Solution of the Barrier Problem

Newton Directions (KKT System)

Vi(x)+ A(x)A—-v = 0
Xv—ue = 0

P L1 X=di
e =/ / iag(x) c(x) = 0

A=Vc(x), W=V_L(x,Av)

v

Solve
WA -1][d,] Vi +AA-v
A0 0||d,|=- C
Vo0 X||d, Xv—ue




el Solution of the Barrier Problem

Newton Directions (KKT System)

Vi(x)+ A(x)A—-v = 0

Xv—ue = 0
e =/1,1,1..], X =diag(x)
A=Ve(x), W=V _L(x,\v) c(x) =0

|
Reducing the System

d =uX'e-v-X"'Vd
W+ Al[d] [V,

X _ ﬂ _ _1
A ol c 2= XY

IPOPT Code — www.coin-or.org



Aﬁﬁé IPOPT Algorithm — Features

Line Search Strategies for Algorithmic Properties
Globalization Globally, superlinearly

- |, exact penalty merit function convergent (Wachter and B.,
- augmented Lagrangian merit function 20095)

- Filter method (adapted and extended

from Fletcher and Leyffer) Easily tailored to different

problem structures

Hessian Calculation Freely Available

- BFGS (full/LM and reduced space) Eclipse !_lc.ense and COIN-OR
- SR1 (full/lLM and reduced space) ﬂlti:on:?luwt:l(\)n?v..coin-or.org

- Exact full Hessian (direct)

- Exactreduced Hessian (direct) IPOPT 3.x' rewritten in C++
- Preconditioned CG

Solved on thousands of test
problems and applications



Aﬁﬁé Evolution of Gradient-Based (NLP)
Algorithms & Tasks

" 80s: Flowsheet optimization SQP
~ 100 variables and constraints l

" 90s: Static real-time optimization (RTO)
over 100 000 variables & constraints

rSQP

(IPOPT)

N o

The most efficient NLP tools now handle millions of
variables and constraints with modest computational effort




Aﬁﬁé Process Optimization
Environments and NLP Solvers

First & Second Derivatives, Sparse Structure NLP Barrier

-------------------------------------------------------------------------- 1 STE
........................................................ <
Compute | ExactFirst Derivatives ) gngPE
Efficiency ........................................................ = S
>~
".i:.i.':].i.t.e..ﬁi.ﬁ;e..r.e.;{é.é.s. .......... SQP ..........................................
................................ o ~10STEs

Simulation DFO
Models > 100 STEs

Black Box

| | | | | | |
100 102 104 106
Variables/Constraints




A% Equation-Oriented Utopia for
Process Optimization

e Glass Box Models - Exact Jacobians/Hessians and sparse
equation structure

e Fast Newton-based NLP solvers

e NLP sensitivity (post-optimality and interpretation,
multi-level opt., ...)

e EO-Modeling Enables:
— Efficient MINLP Strategies
— Deterministic Global Optimization

— Robust and Stochastic Optimization for Uncertainty



Aﬁvﬁé Early Warning Detection System

Municipal Water Networks
(Laird, B., 2005, 2006)

*Installed sensors provide an early warning of contamination

*System provides only a coarse measure of contamination time
and location

*Desired: Accurate and fast time & location information



Aﬁl Water Quality Model

Pipes, Valves, Pumps

Collapsed Node Models
Plug Flow

Complete Mixing

No Reaction

Known Sources Contaminant Free

Time Dependent Mass Injections at All Nodes
(Negligible Flow rates)

Decoupled Hydraulics and Water Quality

Calculations j
* o Storage Tanks, Junctions




« Equation-Oriented Optimization Formulation

ERING Node Concentrations &
Injection Terms Only

. L ~ ~ 2 P Ly )
V= — _ ok ¢, P
o min ;}gfo wp(8) (@) = () S(t—t) di+5 [ ()

)

DY) pu D o, Only Constraints
Gi(a=T;(t),t) = G (y(), (VieP, with Spatial
¢z, t=0) = 0, Dependence
=

ierk(t)

> Qi) Ez'(w:@i(t),t)> + my (1)
Vk € T,

)

( 3 @-(t)) + Qe () + QM (t)
ierk(t)

Pipe Boundary
Concentrations

Qi(t) Ei(w=0¢(t),t)) +my(t)— K > Qi(t)) + QF* (1) + Qi (t)] (1),

1€l (t) Vk € S,

c(t=0) =0,

< my(t) > 0, Vi GD Injection Terms Only

34



A% Pipeline Simulation Techniques

EUlenan Lagrangian
Discretize in time and space Discretize in time alone
Track concentration at fixed points or Track concentration of elements as
volumes they move
Local process for simulation, but global Algorithmic in nature
treatment needed for simultaneous
optimization

Review of methods by Rossman and Boulos, 1996.

35



ﬁ% Origin Tracking Algorithm

origin node = A

timestep =1

_ , H(a=T;(t1),t1) = Ea(t1)
=1 @ =— ® oty = o

origin node = A

timestep =1

B———f—e——(®
origin node = A
timestep =1 _ R
=5 @ i — ® C(.’B:Ii(tf)),tf)) — CA(tS)

c(z=0;(t5),t5) = ca(t1)

Known Hydraulics — Function of Time
Pipe Network PDEs Linear in Concentration
Pipe by Pipe PDEs
- Efficient for Large Networks
- Convert PDEs to DAEs with variable time delays
Removes Need to Discretize in Space

min  f(c, m)

c,com

Elow ‘ gz:{]?:::; | ‘ Formulation | s.t. ¢— Pc=0,
Tool S — B
demands =) Nc+ Nc+ Mm =0,

m >0




A% Municipal Source Detection Example

Injection Location B

any i
ass
acd 10
540
o ?
2e0
. :
g 160
&
° -\f [
8-
§ *
=z & 1,
-
por
'.‘5 q)
2
. s
Algorlthm successfulon over 10( O 08 1 186 2 28 3 348 & 45 5 55 6 85 7 18 & '
networks Time Afer Injection (hrs)

Links to existing water flow network simulator =» variable time delays

Solution time <2 CPU minutes for ~ 250,000 variables, ~45,000 degrees of
freedom =» Effective in a real time setting

Can impose unique solutions through an extended MIQP formulation (post-
processing phase)

37



A% Municipal Source Detection Example

Injection Location B

D -
B v « o 10
440
C &0 10
/ - $40
) :9:3 H

How do we handle Uncertain Inputs? [
Robust Optimization .

S £}
Multi- Scenarlo Optimization B
()r) s BSOSO RIS E 658K ,
Alg( C 0 08 1 18 2 25 3 345 4 44 5 55 & 85 7 15 &

networks Tim2 After Infection (hrs)

Links to existing water flow network simulator =» variable time delays

Solution time <2 CPU minutes for ~ 250,000 variables, ~45,000 degrees of
freedom =» Effective in a real time setting

Can impose unique solutions through an extended MIQP formulation (post-
processing phase)

38



Multi-scenario Optimization

Min f,(d) + 2; f(d, x;)
st.h(x,d)=0,i=1,...N

g(x,d)<0,i=1,...N

r(d) <0
Variables:

x: state (z) and decision (y) variables for each scenario
d: common variables (e. g. equipment parameters) used
0;: substitute for d in each period and add o; =d

Composite NLP

1 Min 2 (fi(‘si’xi) +f0(‘§i)/N)

st.h(x,0)=0,i=1,...N
gi(xi, 51) +s5;,=0,1=1,...N

—_— O<s;,d-06=0,i=1,... N

rd<0




*Multi-scenario Optimization

— Single Optimization over many
scenarios, performed on paralle’

cluster 1400/
_. 1200/
Water Network Case Study 8
— 1 basic model g 1000/
« Nominal design optimization %
— 32 scenarios (operating data) £
- Form individual blocks g %%
o | S 400
*Determine Injection time profiles as 2
200/

common variables
*Characteristics 0
— 36,000 variables per scenario
— 600 common variables
— Solution with 1.2 x 106 variables
(20 CPU min)

o Execution Time

x Problem Size 000000 . 60600 O

800+ ocoo

AAAAAAOOOA
0000000000

4

8 12 16 20 24 28
Number of Scenarios/Processors

32

Parallel Schur-Complement Scalability

1.5e+06

{1e+06

5e+05

0

Number of Variables



*Multi-scenario Optimization

— Single Optimization over many
scenarios, performed on paralle’

cluster 1400 :
1200 DR
12}
Water Ngtwork Case Study - xh -J
— 1 basic model 8 T B
« Nominal design optimization = 800 “11
— 32 scenarios (operating data) £ o 4
+ Form individual blocks 3 6 o
= . ;
*Determine Injection time profiles as £ ' —’ |
common variables 200} )
-Characteristics 0 -
s

— 36,000 variables per scenario

— 600 common variables

— Solution with 1.2 x 106 variables
(20 CPU min)

Parallel Schur-Complement Scalability

11.5e+086
1e+06

15e+05

Number of Variables



K, Al
K2 A2
KN AN
T
Al Al ... Ay D

Optimization under Uncertainty
Multi-Scenario 2> Schur Complement

K Al

A)
A
AT AT .. AL D

A% Decomposition in Parallel Structures

-Wulul fu1

fi, 0 I
-1 szxz szuz fxz
bvﬁzxz Dvhzuz fhz
ﬁg ﬁﬁ 0 -1
-1 Wx3x3 Wx3u3 fx3
vvﬁgxg vvﬁgug fh3
fro  fuy 0
. . —]
-1 W

XNXN-

Dynamic Optimization
Block Tridiagonal - Cyclic Reduction
Nicholson et al. (2016)

Dynamic Optimization under Uncertainty
Block Tridiagonal with Multi-Scenario -

Nested Cyclic Reduction and Schur Complement

Gondzio and Grothey (2011)
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PR.  The Next 15 - 25 Years
Giga-scale Process Optimization

Enabling Tools:

Structured NLPs with billions of variables

Friendly, Powerful and Intelligent Optimization Modeling
Environments

Distributed Optimization Solvers with Exploitable Large-
scale Structures

Integrated with Advanced Computation Environments

(Multi-core CPUs, GPUs...)

Applications:
Dynamic Global Network Models
Electric Grid

Gas and Oil Pipelines
Enterprise-Wide Dynamic, Real-time Optimization



Aﬁl Extend Equation-Oriented Optimization
to (Many) Discrete Decisions?

Min Overall Objective

s.t. Conservation Laws
Performance Equations
Constitutive Equations
Phase and Chemical Equilibrium
Heat Integration
Process/Product Specifications

- Consider MPCCs derived from Bi-level Optimization



Aﬁ; Extend Equation-Oriented Optimization
to (Many) Discrete Decisions?

Min Overall Objective

s.t. Conservation Laws
Performance Equations
Constitutive Equations
Process/Product Specifications

/\

Minimize Gibbs Free Energy Minimize Utilities
(Phase/Chem. Equilibrium) (Heat Integration)

- Consider MPCCs derived from Bi-level Optimization



Ai%al
ERING

Bilevel Problems and NLP Reformulations

Min f(x,y)
X,y
s.t. g(x, y)=<0, h(x,y) = 0
Min f(x, )
y

s.t.g(x, y)<0, h(x,y) = 0

Formulation Guidelines

« Attempt to define regular, convex inner minimization problem
(optimistic bilevel problems, Dempe, 2002)

« Require connected feasible regions for inner problem variables
(no exclusive ORs!)

 How can this problem be solved?



Ai%al
ERING

Mathematical Programs with
Complementarity Constraints (MPCC)

Min f(x,y)
X,y
s.t.g(x, y)=0, h(x,y) = 0
V.f(x, »+V 2(x, Yu+V h(x, y)v=0

g(x, y)=0, h(x,y) = 0
O<ulg(x,y)=<0

Formulation Guidelines

*Substitute optimality conditions as constraints for bilevel
problem =» need to solve “singular system”

*Poorly posed optimization problem, constraint
qualifications violated



Solving MPCCs through NLP

Reformulation — ¢, penalty

Min f(x, y) —u' g(x, y)

S.L.

g(x, y)=0, h(x,y) = 0

V.fx, »+V g(x, yu+V h(x, yv=0
g(x, y)<0, h(x,y) =0

O<u, g(x,y)<0

Formu

ation Guidelines

 Rep

ace complementarity by penalty term and

simple inequalities

 Well
qual

-posed optimization problem, constraint
ifications satisfied



Aﬁﬁé Phase Equilibrium thru Complementarity

75— (14+B-uB)7* + (A+wB* —uB - uB*)Z - AB —wB* - wB’ =0
Liquid Stream

Vapor Stream
Vapor or V,y

Liquid
F, F c N

—» Liquid

I r Zv, P(2y)

F=L+V
- F=Lx.+Vy., Vce{Comps}
FHY +Q=LH*+VvHY

K. =¢l/oY, Vee{Comps}

ye = K (T, P,z,y)z. flzz) =0 flzv) =0
0<z.,1y.<1 f'(zr) >0 f'(zv) >0
0<LV<F f(z0) <0 "(zy) >0

Mass Balance + Necessary KKT conditions

Kamath, Grossmann, B., Comp. Chem. Eng. 2011; Dowling, B., Comp. Chem. Eng., 2014



A% CEOS Phase Equilibrium thru
n Complementarity

73 —(1+B-uB)Z*+ (A+wB* —uB —uB?)Z - AB —wB* —wB® = (
Liquid Stream

F(z)1
No Vapor
Stream
Vapor or
Liquid >/
F F. — Liquid
N I
0<s,LV=>0
F=L+V 0<s,LL>0
Fo=Lx.+ Vy., Vce{Comps} S =p-1zsy
FHF +Q=LH" +VH" K.=¢Y/¢l, Vee{Comps}

Yo =B K (T, P,x,y)x. flzz) =0 flzv) =
Oﬁil?c,ycﬁl f/(ZL)ZO f/(ZV)ZO
0<L,V<F f(z1) <0 f'(zv) >0

f(zr) < Msp, f"(zv) > —Msy
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1.

_ Distillation: Complementarity Formulation
He (Raghunathan, B, 2002; Kamath et al., 2010)

Consists of Mass, Equilibrium, Summation
and Heat (MESH) equations
Continuous Variable Optimization

* number of trays

e feed location

e refluxratio

When phases disappear, MESH fails.
Reformulate phase minimization,
e embed complementarity
 Modeldry trays, Vaporless trays

How does this extend to distillation
optimization?



Aﬁé Distillation Optimization (MESH Model)

Minimize Reboiler Duty ‘

S.t. Top/ Bottom Product Specifications

Mass

Equilibrium

Heat

 Three component Separation
(nCo6, nC7, nC9)

 Fixed: 20 trays, Feed =10

* Reboil and Reflux as decisions

Summation



ical

 Distillation Optimization (MESH Model)

Minimize Reboiler Duty ‘

S.t. Top/ Bottom Product Specifications

(L, + DL+rd)x, +DVy, =V,_y,,, i€CON

1

Lixij + Vlylj = Li+1xi+l,j + Vi—lyi—l,j + Zfidekxfdj t 8 'rd'xij 1€COL

Bx, +Vy, =L,x, + Z fuFd.xf, i€EREB

Yij = ﬁiKlszj
—sly =B, -l= sl.L
0= Ll.J_sl.L =0

0<V.ls =0
(L,+ DL+ rd)hl.+ DV -hv, =V _hv,_ +0Q. i€ CON

Lhl +Vhv, =L Kl +V_hv_ + Z [y Fd,shfy +g,rd-hl, i€COL

B-hl. +Vihv, =L hl., + Z fFd shf,, +Q, i€EREB

T « Three component Separation
e (nC6, nC7, nCY)
o SR -  Fixed: 20 trays, Feed = 10

* Reboil and Reflux as decisions




Distillation Results — Min Heat Duty
(Kamath et al., 2010)

Bl T ’ .
8 8
i _— i X k= 0.8

ol Xehk2 0.9, Xp>C o

01 3 5 7 é 1 13 1 go'a- 7 9 1 13 115 17 19 21

Tray2 %o,s- Tray!
:
02r X B,hk > 045
Case Product purity constraints Optimal reboiler duty (MW)

Ltop,n-hexane 2 0_9’ Lhottom, n-nonane 2 0.9 2814
Lhottom,n-nonane > 0.8 19.337
Lhottom,n-nonane > 0.45 0.0

Lo b =




Glass Box Optimization:
Air Separation Units (Dowling, B., 2015)

Boiling pts (1 atm.)

*Oxygen: 90 K
*Argon: 87.5K
*Nitrogen: 7.4 K

Feedstock (air) is free: dominant cost
IS compression energy

Multicomponent distillation with tight
heat integration

Nonideal Phase Equilibrium: Cubic
Equations of State

Phase conditions not known a priori



« Complementarities
replace discrete
decisions

* Tray bypass models

« Continuous NLP

Feed Air

Aﬁ ASU Superstructure — Building the Column

— Crude Nitrogen (vapor)

e

Liquid Vapor

(medium pressure)

Recycle from

High Pressure Column

Column
Cascade

Liqluid VaI)or Total

Partial
Liquid |, Liquid Reboiler

Vapor
Vapor or Flash
Liquid

Liquid

Vapor or [> j Vapor and/or Valve

Liquid Liquid

|
|
|
|
|
|
|
|
|
|
|
I Vapor Liquid Condens er
|
|
|
|
|
|
|
|
|
|
|
|
|

- Splitter
T cmommniny

L> Oxygen rich product (liquid)

56



ASU NLP Superstructure - @J_

ASU Compression Energy
(kWh / kg Oy product)

min

s.t. Thermodynamics Module
Unit Operation Models
Cascade Model
Flowsheet Connectivity
Heat Integration
Oy product purity > 95 mol%

» Glass Box strategy with nested NLPs
* Determines Final ASU Design:
Number of Trays / HX integration / P, T, Flows



A%‘“ ASU Optimization e .

R .
AT, .. =1.5K,95% O2 purity LP Column e
8% feed air nes
« Balanced Reboiler/Condenser 21 stages,1 bar
« No heating and cooling, only power 98% O2 recovery | cim

« Typical NLP: 15534 variables, 261 s
degrees of freedom

« MPCC bootstrapping process = 15
CPU min (CONOPT/ GAMS)

* 0.196 kWh/kg (86% comp efficiency) s nu Q=
 Superior to Commercial Designs
Composite Curves ™
i HP Column
- 92% feed air o

250 10 stages, 3.5 bar o
< .. 98.4% pure N, stream |
'_ SOV

1 1 1 1 1 1 1 1
0 2 4 6 g 10 12 14 16 18
Q (Scaled Units)




Process Optimization Based on O, Purity
(¥25% energy savings in literature comparison)

290
270

250 o

N
w
o

Specific Energy
(kWh/tonne)

0 T e T @ ..
170

150
88% 89% 90% 91% 92% 93% 94% 95% 96% 97% 98%

Oxygen Purity (mole %) (we use AT,;, = 1.5K)

® This Study A Xiong et al (2011) CONETL (2010) - Low Capital 4 Amann et al (2009)
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ERING

Enabling Tools

The Next 15 — 25 Years
Multi-level Optimization Models

Complementarity modeling platforms

Advanced algorithms for MPCCs, discrete optimization and global
optimization

Global optimization models distributed locally through multi-level
optimization

Applications

Discrete decisions in time and space through complementarities

Phase changes and complex phenomena in pipelines, complex heat
exchangers and reservoir models

Enterprise-wide distributed Advanced Control, Real-time
Optimization, Integration to Scheduling and Planning



AHJ Summary and Conclusions
ERING

« Optimization is much more than glorified case studies on
simulation models
Exploit sparse, structured models
Embrace nonsmoothness, and physical transitions
Gain insights on optimal solution

« Solving larger optimization problems is not more expensive
Equation-based Modeling Utopia is close to reality
Fast NLP tools, sensitivity
Powerful optimization platforms, even for on-line
optimization

* Multilevel Optimization Extends Process Modeling
Extend domain of solving problems
Systematic exploration of discontinuous phenomena

 Huge Potential for Process Optimization Applications
Ongoing work (EO-Process Modeling, Surrogate Optimization)
within PyOMO Optimization Framework and NETL/Sandia/LBNL



