Chemical Engineering Course Packages

John L. Falconer and J. Will Medlin (Katherine McDanel)
Janet deGrazia
Chemical and Biological Engineering
University of Colorado Boulder

Download the CDF player (http://demonstrations.wolfram.com/download-cdf-player.html)

Open OneNote 2016 (not the OneNote App)

Open www.LearnChemE.com

When you were an undergraduate, how many courses used active learning?

- A. 0
- B. 1
- C. 3
- D. 5 or greater

When you are an undergraduate, how many used clickers?

- A. 0
- B. 1
- C. 3
- D. 5 or greater

When you are a graduate student how many courses used active learning or clickers?

- A. 0
- B. 1
- C. 3 or greater

Is there a way to teach that is more effective then lecturing?

How do you implement this approach?

How do students respond?

"Why do outstanding scientists who demand rigorous proof for scientific assertions in their research continue to use and, indeed, defend on the basis of their intuition alone, teaching methods that are not the most effective?

Handelsman et al. Science 304, p521 (2004)

225 studies were analyzed

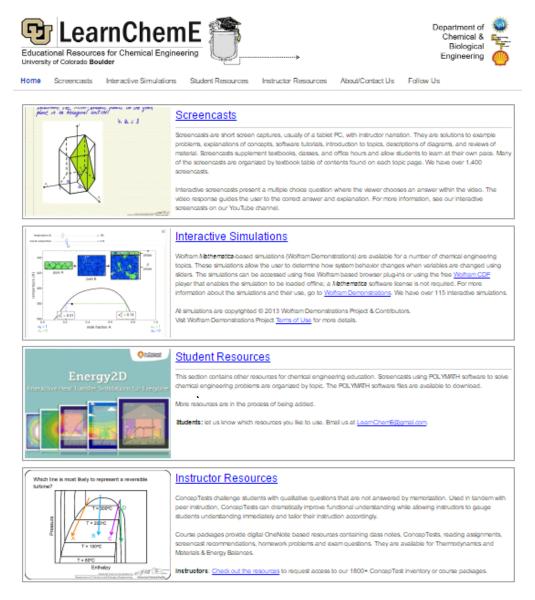
compared active learning and traditional lecturing in STEM courses active learning: students' performance on exams and the concept inventory increased by 0.47 standard deviation (STD) traditional lecture: students were 1.5 times more likely to fail

Freeman et al., Proc. Nat. Acad. Sci. 111, 8410 (2014)

What routinely goes on in most college classes is not teaching and learning, but stenography

Rich Felder

Goals:


Demonstrate active-learning resources in course packages

Demonstrate how to use OneNote and course packages

Save significant time in course preparation.

Open the LearnChemE site on your computer

http://www.learncheme.com/home

What is a course package?

Comprehensive set of teaching resources in Microsoft OneNote

Complete set of in-class materials for a semester class

Links to screencasts for a flipped class

Links to interactive simulations

Multiple years of assignments and exams (with solutions)

Reading quizzes

Learning objectives/exam study guides

Organization materials (syllabi, schedules)

Information on how to use the packages

Open OneNote 2016 on your computer

Open a course package (access from email not website)

Sign in to download notebook (use email address that granted access).

edit in Microsoft OneNote

Thermodynamics

Kinetics

Material and energy balances

Use course package on USB drive or OneDrive or open from LearnChemE (need access?)

Why OneNote and Tablet PC?

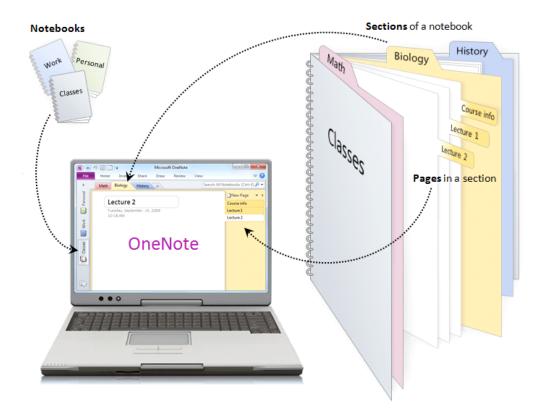
Easy to use in class

Well suited for tablet PC and writing on screen (taskbar on left)

Easy to modify

Easy to learn

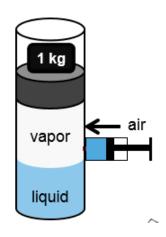
Save time- everything in one place for course

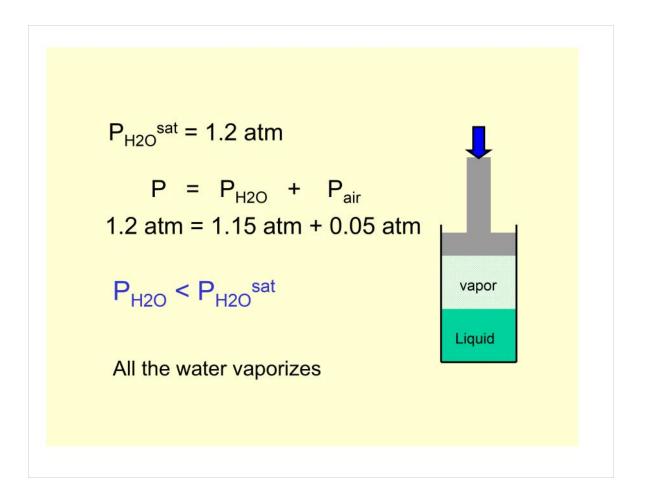

Multiple other uses

Part of Microsoft Office

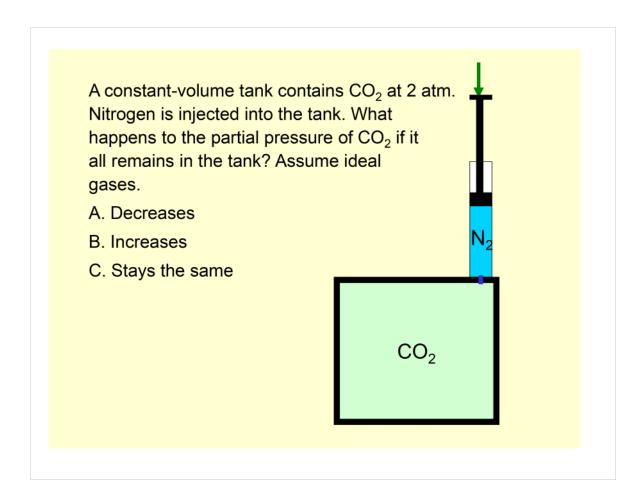
How are OneNote pages different?

Type anywhere on the page.


What are the tabs?



Major part of class notes in OneNote: ConcepTests


A piston-cylinder only contains water, which is in vapor-liquid equilibrium at 1.2 bar. When 5 cm³ of air is injected into the system at constant pressure and temperature, _____ of the water

- A. all, vapor condenses
- B. some, vapor condenses
- C. all, liquid vaporizes
- D. some, liquid vaporizes

If you gave this problem to your class, what answer do you think they would select?

A constant-volume tank contains CO_2 at 2 atm. Nitrogen is injected into the tank. What happens to the partial pressure of CO_2 if it all remains in the tank? Assume ideal gases.

- 13 A. Decreases
- 32 B. Increases
- 6 C. Stays the same (chance is 17)

Liquid water is in equilibrium with air at 50°C in a piston/cylinder system at 1 atm pressure. The pressure is raised to 2 atm by pushing on the piston. Temperature is constant. At equilibrium, the partial pressure of the water:

- A. Decreased
- B. Increased
- C. Remained the same

Not answered by memorizing answer

Liquid water is in equilibrium with air at 50°C in a piston/cylinder system at 1 atm pressure. The pressure is raised to 2 atm by pushing on the piston. Temperature is constant. At equilibrium, the partial pressure of the water

Answers at beginning of semester

- 22 A. Decreased
- 15 B. Increased
- 14 C. Remained the same (chance is 17 of 51 students)

ConcepTests

- o not too easy
- o not calculations
- not memorization
- o don't contain non-essential information
- o emphasize important concepts
- good wrong answers

o challenge students with qualitative questions

Student feedback on ConcepTests

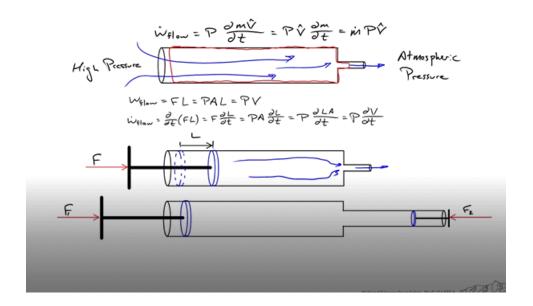
- "I cannot describe how much the active learning helps. I don't think I have ever taken a class where I feel like I fully understand the information as well as I do in this one."
- "Something you are doing that helps me learn are concept questions. They make me think about the problem and clear up concepts. A lot of times I think I will understand something but I don't really understand it and the concept questions help show me that."
- "The clicker concept questions are great because they are interactive, which makes it easier to pay attention, and they are indicative of what you know and what you don't know."
- "I love the way you use clicker questions throughout the entire class rather than lecturing."
- "The way I learn best is by making mistakes, so when I don't know how to do the clicker questions, I end up learning much more than I would have if you ran the class in a lecture style format"
- "I would have to say that the format of your thermodynamics class was the most enjoyable and beneficial to my learning as a student. For the first two years... I became accustomed to the traditional lecture format that most professors utilize. It is very hard to pay attention and stay motivated in these type of class settings where we just sit for an hour and take notes while the professor rambles on about subjects we know little about."
- "The interactive learning (clickers, etc.) is super helpful. It really helps me keep my attention in class."

2,000 ConcepTests for 7 courses

AIChE Concept warehouse has more ConcepTests

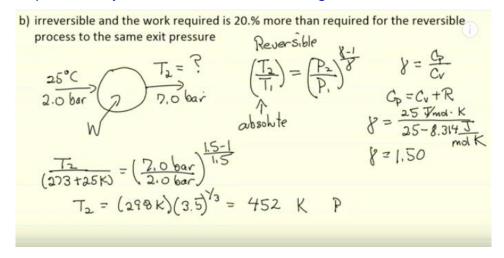
Use in class, on exams, on HW

Course packages have ConcepTests for given class plus extras -easy to replace have 2 copies of OneNote open at the same time

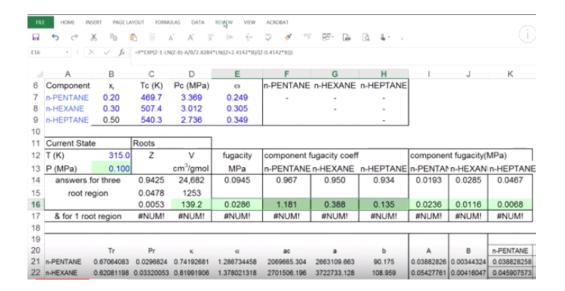

Break: 5 minutes

Screencasts

Introduction to a topic


Screencast example: Flow work

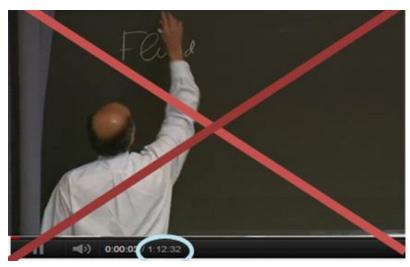
YouTube: Flow work


Example problem

https://www.youtube.com/watch?v=Gag_HoWILnE#t=1m30s

Software tutorial

https://www.youtube.com/watch?v=0QFLng0fz68 &feature=youtu.be&list=PL4xAk5aclnUjMQaDPzjOWCkGQORbYDNI 5#t=1m0s


Other types of screencasts

Exam problems

Explain diagrams

Interactive ConcepTests

What is a screencast?

Not video of person & board Not 50 minutes Not multiple topics

How is a screencast better than a live lecture?

Students watch on their schedule (24/7)

Students control pace: start/stop/replay

Just-in-time use

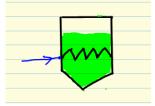
Short, modular

Students like them

Students use them (> 4.5 million views in 12 months)

Increase student confidence

Improve student learning


Free class time for active learning


Screencasts minimize cognitive overload

Diagrams and verbal explanation at same time enhance learning (Clark and Mayer, 2011)

More flexibility than textbook

Material sequenced in time, unlike textbook

Survey 440 students about screencasts

95%: useful or very useful

85%: better than textbook at improving

understanding

92%: felt more confident about material

Student feedback

"Screencasts are fantastic."

- "Screencasts are amazing."
- o "Super, super, super useful."
- o "I love screencasts!"
- o "I think screencasts are fantastic and incredibly helpful."
- "As for screencasts, they are <u>REALLY</u> helpful. It's like office hours available 24/7."
- o "I think screencasts are very VERY helpful,"
- o "I think that screencasts were unbelievably effective....."


screencasts for 14 courses

Open some screencasts to get a better idea

http://www.learncheme.com/screencasts

Screencasts

Screencasts are short screen captures, usually of a tablet PC, with instructor narration. They supplement textbooks and lectures by featuring solutions to example problems, econcepts, software tutorials, descriptions of diagrams, and material reviews. They are made and reviewed by faculty. (CC) indicates the entire topic has corrected closed captic over 1.400 screencasts available for the following engineering courses/topics:

Interactive simulations

Mathematica

Wolfram Demonstration Project http://demonstrations.wolfram.com/new.html

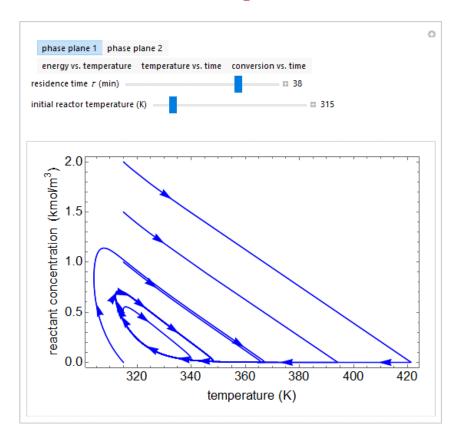
CDF files

Download CDF reader

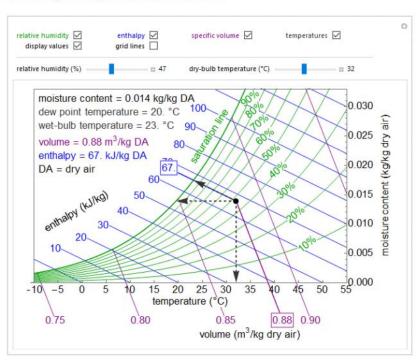
http://demonstrations.wolfram.com/download-cdf-player.html)

Open one of the simulations

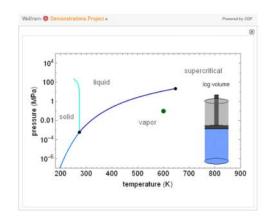
http://www.learncheme.com/simulations

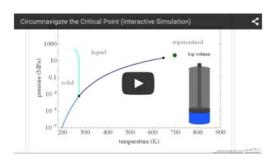

Interactive Simulations

Our interactive Mathematica simulations can be viewed below using Opera and Mozilla Firefox browsers with the free Wolfram CDF plug-in. They can be downloaded and used offline with the Wolfram CDF plug-in. They are also available on the Wolfram Demonstrations Project website. Most thermodynamics and kinetics/reactor design simulations have an accompanying screencast showing how to use them. We currently have more than 115 simulations, and we are continuously improving and adding new simulations. Please contact us at learncheme@gmail.com if you identify any problems with the simulations or if you have suggestions for simulations we might prepare.


Multiple steady states in nonisothermal CSTR

Multiple Steady States in a Continuous Stirred-Tank Reactor with Heat Exchange


Reading a Psychrometric Chart


Reading a Psychrometric Chart

Simulation and short screencast

Circumnavigating the Critical Point

The pressure-temperature phase diagram for water is used to illustrate the concept of state functions and the possibility of going from the liquid phase to the vapor phase (or the other way) without a phase change (a single phase throughout the process) by circumnavigating the critical point, which is the highest temperature and pressure where two distinct phases exist (647 K, 22.1 MPa for water).

Interactive simulations

Demonstrate concept or explain diagram

Easy to use- not too many options

Studies show simulations improve learning

Actively engage students

Observe behavior that hard to observe in real time

Students like them

Use with ConcepTests in class (part of course packages)

Use with assignments

Positive feedback from students

"These interactive simulations were amazing!"

"Really liked the simulations. You should use more of these"

"The interactive simulations are extremely useful."

"The interactive simulations were the **best thing that could even imagin**e."

"The simulations were very helpful to me. I'm a visual learner, so lectures don't always stick but diagrams always have been very helpful.

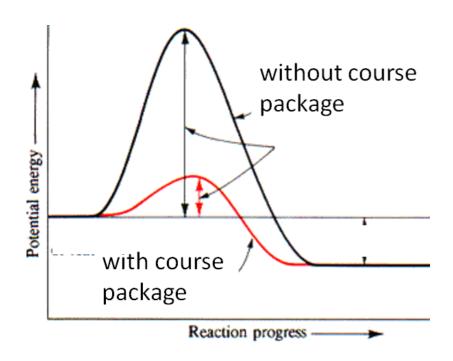
"The interactive simulations are **incredibly useful** in understanding the material, especially vapor-liquid equilibrium and vapor liquid-liquid equilibrium."

"I **enjoyed using the interactive simulations**. Thought they provided an excellent visual learning tool that added tremendous value to the class."

"The interactive simulations were very useful because I could test every scenario on my own rather than just seeing a few general ones."

How to study/How to learn

Which of these would you suggest your students do? Click A for yes, B for no


- Re-read textbook
- Underline and highlight textbook
- Review notes before exam
- Reread solutions to HW problems before exam
- Concentrated study on one topic
- Study in the same location
- Study several hours non-stop
- Being persistent: continue trying to solve problem when stuck (e.g., 30 minutes)

Resources on LearnChemE on How to Study

http://www.learncheme.com/student-resources/how-to-study-resources

Summary

Course packages

LearnChemE:

3 course packages (will continue to update) template for other courses

- > 1,400 screencasts
- > 130 interactive simulations (150 soon) (on USB)
- > 2,000 ConcepTests (on USB)

How to Study/How to Learn Resources

Goals:

Demonstrate active-learning resources in course packages

Demonstrate how to use OneNote and course packages

Save significant time in course preparation.

Try course packages, <u>www.LearnChemE.com</u>, screencasts, interactive simulations, ConcepTests