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Macroscopic and Microscopic

Macroscopic laws originate in molecular nature of matter

— Many interesting behaviors owe to the existence of molecules
« Phase transitions, mixing, heat conduction, viscosity, reactions, etc.

Thermodynamics and continuum mechanics do not need to
acknowledge molecules to be useful
— Provides exact relations between changes in observables

— Formalism for characterizing thermal behavior and conservation laws

There 1s a cost to abandoning the molecular view
— No predictive power

— Takes time to form some intuition
« What is entropy? What is viscosity? What are rate constants?

Purely macroscopic view insufficient for many emerging
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Molecular Simulaton

* Application of computers to calculate properties of materials
defined in terms of a molecular model

1.6 1.8 2.0

* Emergent behavior
— Molecular simulation 1s a hybrid of theory and experiment
— Detailed behavior remains fully accessible

« Suitable as a tool for education
— Instructional technology enhances student learning
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Molecular Simulation as a Teaching Tool

Molecular simulation provides a virtual laboratory for
molecular mechanics

— Physically accurate (for the choice of molecular model)

Many interesting, nontrivial behaviors can be demonstrated
— Open ended
— No simple underlying model that directly programs behavior

The molecular picture 1s completely accessible

— Possible to observe how a macroscopic outcome results from
collective molecular actions

Quantitative measurements can be taken

— Molecular behaviors analyzed with tools of thermodynamics and
continuum mechanics
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Piston Cylinder Apparatus

* Prototype for interactive molecular simulations as a teaching

tool
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Obstacles 1.

* Educational activities must focus on the use of simulation,
not its development

— Don’ t bog students down in complex coding tasks

« Simulations should be interactive and graphically-oriented

— Manipulate 1n real time, like an experiment

« Results should be readily accessible and amenable to post-
simulation analysis

— Like an experiment

« Simulations need to be presented as a complete, fully-
functional integrated package
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Obstacles 2.

* Broad range of application areas

— Chemical thermodynamics
» Boiling, freezing, miscibility, self-assembly, osmosis, etc.

— Transport phenomena
« Heat transfer, diffusion, sound, viscosity,...

— Kinetics
« Chemical reactions, polymerization, nucleation,...

— Materials science
 Elasticity, strength, electronics, photonics,...

— Biology
« Protein folding, ion channels,...

* No single person can develop simulations to encompass all
the potentially relevant phenomena
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Obstacles 3.

Graphical programming 1s a tedious skill that few researchers
otherwise need

— Most content experts cannot develop graphical tools

Educationally effective graphically-oriented simulations are
difficult to develop

— Pedagogical skill varies among practitioners

— Interest and/or skill to do assessment is not widespread

In summary
— A broad range of people are needed to cover the breadth of application

— The skills needed to develop effective modules are not found among this
same group

Also are obstacles that confront research applications
— Accessible length and time scales
— Long CPU time needed to gather some types of results

— Accuracy of molecular model
% UNIVERSITY AT BUFFALO
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Module Development Project

A community effort to develop molecular simulation
teaching modules

Solicit short proposals for module designs from the science/
engineering community at large

Select several from this pool

Develop modules
— We produce graphical-oriented molecular simulation

— Module consultant produces background documentation

Aim was to produce 12 modules in this manner

Assess effectiveness of the modules

— Involve multiple groups

Supported by NSF CCLI grant O o —



Definition of “Module”

Interactive, graphically oriented molecular simulation

« Supporting material to help instructor and student to use
module
— Introduction, describing physical ideas
— Background, containing technical information
— Examples, with step-by-step instructions on use of simulation
— Problems, relevant to module for assignment by instructor
— Instructor Material, describing particular points or caveats

— Assessment Material, to be completed by student and/or instructor
for use 1n formative and summative evaluations

— Simulation Instructions, giving details on how to set up and run
simulation in various ways, with source code to permit modification

Hosted on a wiki to facilitate editing by community

UNIVERSITY AT BUFFALO E ]
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Module Consultant Responsibilities

Generate general 1dea for the module (via a proposal)

Specify all aspects of the simulation (in consultation with simulation
developers, as needed)

Prepare all supporting materials (excluding general assessment
material, and simulation instructions)

Prepare assessment material specific to the module (in consultations
with pedagogy expert, i1f needed)

Use and assess simulation module in a course setting, and report results
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Molecular Dynamics

e J. Richard Elliott, Akron
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* Sohail Murad, Illinois-Chicago
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* Jochen Autschbach, University at Buffalo (Chemistry)

— Experiments measure virial coefficient of CO,
— VLE simulation of phase coexistence of model fit to data
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Polymerization Reactions

William Chirdon, Louisiana-Lafayette
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mclassroom

POLYMERIZATION SIMULATOR

For Introductory Polymer and
Material Science Courses

WiLLiam M. CHIRDON

University of Louisiana at Lafayette * Lafayette, LA 44130

ne of the fundamental challenges in teaching a poly-
mer science course is to develop the student’s intu-
ition regarding how this class of materials behaves.
Professors often describe polymers as entangled masses of
spaghetti or kite string to explain the unigue behavior of poly-
mers. The reason this is commaonlv done is that if stndents can

type. A stoichiometric reaction at high conversion will result
in long polymer chains of alternating monomer types. A clas-
sic example of this reaction is the synthesis of polyester from
a monomer with two alcohol groups and a second monomer
with two carboxylic acid groups. Modeling the kinetics of the
molecular weight development does not reauire knowine the
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 Heath Turner, Alabama
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 Redhouane Henda, Laurentian University

File Help
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* Ludwig Nitsche, Illinois-Chicago

e OO Droplet
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 Dan Lacks, Case Western
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« Ken Benjamin, South Dakota School of Mines
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» Alberto Striolo, University of Oklahoma

e NOO Colloid
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* Lew Wedgewood, Illinois-Chicago
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Polymer Rheology
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« Lev Gelb, University of Texas-Dallas

File Help
Set Temperature | Configuration Metrics | Adsorption
.
0.0 1.0 2.0 3.0
1.0
A | B

Remove Component B

log1l0(P)

P/Psat

0.03936

epsilon

00 1.0 20 30 4.0 50
5.0

Profile

Continue Reinitialize

Reset averages

UNIVERSITY AT BUFFALO
State University of New York



Usage Statistics
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Molecular Simulation Learning Resources

 [.ecture notes

— www.eng.buffalo.edu/~kofke/ce530/Lectures/lectures.html

— engineering.ucsb.edu/~shell/che210d/index.html

 Textbooks

M. P. ALLEN
D. J. TILDESLEY

Computer
— Frenkel & Smit Simulation
of Liquids
— Allen & Tildesley
* Google!

UNIVERSITY AT BUFFALO E |
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Piston-Cylinder Module
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Piston-Cylinder Module

* Module walk-through

* General concepts
— Heat, work, reversibility
— Equations of state

UNIVERSITY AT BUFFALO
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General Concepts

* Internal energy
— Potential and kinetic energy of molecules, piston
— Visible in simulation, lumped by thermodynamics

 Work
— W =PAV
— Pressure 1s the internal pressure of the molecules, not necessarily the
external pressure on the piston
* Heat

— Non-concerted transfer of energy to surroundings
— Modeled via an artificial thermostat
— Not quantified directly

UNIVERSITY AT BUFFALO
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Start adiabatic, fixed piston; observe properties

Release piston; observe

Set 1sothermal; observe

Change potential to repulsive

Set adiabatic, slowly lower pressure to 100, slowly increase
Lower and raise pressure again, but quickly

Set 1sothermal at 100K, pressure at 10 bar-nm, change
potential to attractive, € = 4000 J/mol, manipulate pressure
and temperature and observe behavior of atoms

UNIVERSITY AT BUFFALO h
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Problems and Activities

Measure EOS for each potential: ideal gas, repulsion,
attraction

Evaluate virial coefficients from the EOS data

Devise an experiment to measure the heat capacity of the
system

UNIVERSITY AT BUFFALO
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Polymerization Module

« William Chirdon

— U Louisiana- Lafayette
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POLYMERIZATION SIMULATOR

For Introductory Polymer and
Material Science Courses

WiLLiam M. CHIRDON
University of Louisiana at Lafayette * Lafayette, LA 44130
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Background

* Visualize and understand models used 1in polymer science
— “Think like a polymer”
— Interpret microstructures
— Predict effect on properties

— Derive corresponding equations

 Kinetics of polymerization reactions

— Details of organic chemistry not essential to understanding features
unique to polymers

— Treat in models as simple spheres with bonding rules

* Two models are presented

— Stepwise growth
— Free-radial chain polymerization

UNIVERSITY AT BUFFALO
State University of New York_



Module Controls and Observables

* Control
— Adiabatic or 1sothermal
— Temperature (if isothermal)

— Bond energy

* Observe
— Number- and weight-average molecular weight
— Chain-length histogram
— Conversion
— Temperature

— Visualization (2D simulations)

UNIVERSITY AT BUFFALO
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Stepwise-Growth Module

« At least two different monomer types

* Typ e A ‘ HO—R—OH HO\©/OH Resorcinol

— Di-functional alcohol, “di-ol”

+ Type B @ R
— Di-functional carboxylic acid, “di-acid” HO/ \OH

* Monofunctional forms — end-capping agents

— Mono-ol ‘
— Mono-acid ‘

 Tri-functional acid — cross-linking agent

) @) OH
— Crosslinker ‘ L
Cross e m Citric acid
HO OH
OH Ly

UNIVERSITY AT BUFFALO
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Stepwise Growth - Basic Reaction

. . Il Il
 Condensation reaction R-C40H + H-OR" — R-C-OR"+ Ha0

Carboxylic
acid Alcohol Ester Water

« Example: poly(ethylene terephthalate) (PET)

0 0 0 0
Il Il
HO—%':—@-(":—OH + H-0-CH,~CH,~OH —> HO—C—@-C-O—CHz-CHz-OH + H,0

Terephthalic acid Ethylene glycol Water
O O ¢
@}“ o % W
« Ot "o \? \o\o\ft‘*o\ “

% UNIVERSITY AT BUFFALO
. State University of New Yo
www.materialsworldmodules.org e e



Stepwise Growth - Student Activities

* Predicting average degree of polymerization
— E.g., 3 di-ols : 2 di-acid = max no.-avg. degree of polymerization = 5
— Try this: 300 di-ol, 200 di-acid, rxn energy 40, 7'= 300
— Then this: 200 di-ol, 200 di-acid, 100 mono-ol

* Models
< 1 = 1
Xn=——, Xw=-—P  PDI=1+4p
l-p l-p
p= conversion Nreacted sites / Nsites
)_( _ ZiNiMi
Xn = number-average molecular weight AF
_ D2 NM

Xw = weight-average molecular weight "N,

UNIVERSITY AT BUFFALO l
11 PDI = polydispersity index, X, /X, h 22 ivrsty of N TR



Other Activities

* Look at conversion vs. time, compare to model

% = —k| M]2 Stoichiometric conditions
* Gelation .

— Critical conversion for gelation P, = :
— Example f=
« 700 di-ols, 400 di-acids, 200 crosslinkers

f = (700 X 2 + 400 x 2 + 200 x 3) / (700 + 400 + 200) = 2.15
. P,=0.93

 Temperature effects

— Adiabatic vs. 1sothermal

% UNIVERSITY AT BUFFALO
State University of New Yo_
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Free Radical Chain Addition

e Different reaction mechanism

* Species
. e.g., ethylene
— Identical monomers ‘ \
o e.g., hydrogen u
— Initiators “ peroxide

‘ HOOH <= HO* *OH

. HO* H2CCH2 <-> HOCH2CH2*

—




Chemical Potential

* Driving force for diffusion

% UNIVERSITY AT BUFFALO
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c T=1.2

N, =100, Ny =350

* 6,=15A,=15,¢,=05
* 65=09,A3=15,¢e5=1.2

 Initial concentration of both species 1s uniform across box
 Initiate simulation, observe net diffusion

« Examine how diffusion connect to chemical potential
difference = from high p to low p

UNIVERSITY AT BUFFALO
15 State University of New Yo_
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* Sohail Murad — Illinois/Chicago
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Osmosis - Concepts

17



soln

Equate solvent chemical potential 44

(p+1Lx,)=p,(p)

Composition and pressure dependence

i
dp

=V, My(x,)=u5+RTInx,y,

W (p+TLx,)=u,(p)+1V, + RT Inx,y,

* For osmotic equilibrium

RT
[I=——Inx
V A}/A

A

Dilute, 1deal solution

RT RT
Il= —Tln(l—x) =—X
VA A

% UNIVERSITY AT BUFFALO
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* Hard spheres with a semipermeable membrane

e (Otherwise and ideal solution

% UNIVERSITY AT BUFFALO
State University of New
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Problems and Activities

* Measure the osmotic pressure as a function of composition
— Use all solute on one side
— Fixed temperature

* Measure the osmotic pressure as a function of temperature

— Fixed composition

* Measure the osmotic pressure as a function of total number
of molecules

% UNIVERSITY AT BUFFALO
State University of New Yo_
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eaction Equilibrium Module

806 Reaction Equilibrium
File Help
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Reaction Equilibrium Module

* Module walk-through 4

« Molecular model

— Parameters

— Interactions

UNIVERSITY AT BUFFALO ] h
2 State University of New York :-



Reaction Equilibrium Module

* Five species
R B

* Atom dynamics

e Reactions

R+R=PR,
R+B<=RB
B+B=B,

UNIVERSITY AT BUFFALO “.
3 State University of New York :-



Standard Properties

e Chemical potential
u, = (T)+ kT In px,¢,

e Standard state

— Ideal gas, unit mole fraction, unit density

* Dependence on potential parameters
exp| —4/(T) |= g, = fdr exp|—u(r)]

— Monatomic

W (T)=0

— Diatomic
u(T)=e—kI'In| no* (1-xk*)/ X |

% UNIVERSITY AT BUFFALO
State University of New Y_
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Reaction Equilibrium

Reaction X+Y <= XY
Equilibrium  u,, —u, —p, =0
Separate chemical potential 1, = y*(T)+ kT Inpx ¢,

Collect terms 1 «x

Do g, = OPL (M~ ) KT |= K (T

Assume fugacity coefficient ratio 1s 1.0

Atom balances p(xX + Xyy +2Xy, ) =ny
p(xY + Xyy +2X, ) =n,

6 equations, 6 unknowns

— XR> XB> XR2> XRB> ¥B2> P
— 3 reaction equilibria, 2 atom balances, normalize mole fraction

UNIVERSITY AT BUFFALO
State University of New Yo_



« Evaluate equilibrium constant at several temperatures
— Regress data to get

o deT) L ong
~o(1/T) Y,
« Using all black atoms
— Equilibrate adiabatically
— Change BB epsilon from zero to 400
— Examine change in temperature

— Extract heat of reaction assuming ideal-gas heat capacities
* Cv/R = (2/2) nAtoms

o

« Examine on equilibrum of
— Atom size
— Atom masses

UNIVERSITY AT BUFFALO
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