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Class 10:30am - 11:45 am TR Physics Building 111 Aug 19, 2019 - Dec 07, 2019 Lecture Curtis Patrick Martin {p]@ Brett Savoie @

* One piece in larger school & university initiatives
« Concentrations for undergraduate & PMP; data science co-op
« Designed for graduate students & higher-level undergraduates
» Supplemental non-CS courses popping up around campus

« Focused on effective, responsible application of machine learning
» Broad survey of methods & applications in chemical engineering. . .
» ... deep understanding of strengths, weaknesses & cycle
 Fundamentals, tools & process


https://www.purdue.edu/data-science/
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Course Material | - Fundamentals

* Programming proficiency

« Python (via Jupyter notebook) best option for implementing machine learning quickly
» Pieces of process discussed concurrently (e.g., formatting, dealing w/ missing data)

pa ndaS il plotly | Graphing Libraries .Wn
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* Probability & optimization
« ML algorithms are often derived from or built on concepts in probability & optimization. . .
* ... but generally don’t require you to be an expert in either


https://matplotlib.org/
https://numpy.org/
https://pandas.pydata.org/
https://plot.ly/python/
https://scikit-learn.org/stable/
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* Unsupervised machine learning

» Dimensionality reduction (principal components analysis)

» Clustering (k-means, DBSCAN, mixture models,
agglomerative)
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e Supervised machine learning
VA

» Regression (multiple linear, regularized variants, PLS)
@ 9.

» Classification (logistic regression, naive Bayes, nearest
neighbors, decisiontrees & random forests, SVM, neural

networks & variants)



PURDUE Davidson School of Chemical Engineering

COLLEGE OF ENGINEERING
UNIVERSIT Y.

Course Material lll - Process

* Model selection
» Strengths & weaknesses of algorithms; how do they compare
« Under what circumstances are they likely to be effective
» Effects of hyperparameters on performance
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Linear Regression Comparison (alpha = 0.0)
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k-Nearest Neighbors (k = 1, Accuracy = 0.962)
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* Model selection
» Strengths & weaknesses of algorithms; how do they compare
« Under what circumstances are they likely to be effective
» Effects of hyperparameters on performance

* Model validation
» Performance estimation & how metrics affect perception of results
» Likelihood of generalization
« Commonissues (e.g., overfitting, bias-variance tradeoff, curse of dimensionality)
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Learning Curves (Naive Bayes)
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Learning Curve Learning Curve
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The Experience Thus Far

e Successes
* Inaugural enrollment @ max capacity (30, ~ 10:1 graduates:undergraduates)
» Response has been overwhelmingly positive (though 3 plenty of room for improvement)
« Willbe offering again in Spring 2020 due to high demand

« Challenges
« Teaching to a bimodal class
« Convincing someone else to take over introductory programming
» Getting real-world data; varying applications
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Thanks to Many
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