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Overview 
Introduction

• Main Themes

• Modeling Levels 

Closed Models
• PDEs and ROMs

NLPs and Model Integration

• LDPE Example

Fully Open Models 

• Challenge Problem: NMPC

Conclusions 
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Hierarchy for Optimization Models

1.1. Fully Open Fully Open 

•• Completely declarative smooth modelsCompletely declarative smooth models

•• First, second derivatives cheap to calculate First, second derivatives cheap to calculate 

•• Solved with NewtonSolved with Newton --type methodstype methods

2.2. SemiSemi --closedclosed

•• procedural models solved efficiently (e.g., DAE int egrators) procedural models solved efficiently (e.g., DAE int egrators) 

•• can be differentiated efficientlycan be differentiated efficiently

3.3. Closed Closed 

•• Procedural models, complex, special purpose solversProcedural models, complex, special purpose solvers

•• Smooth Smooth 

•• Difficult to differentiate Difficult to differentiate 
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Hierarchy of Nonlinear Programming 
Formulations and Model Intrusion 

Closed

Open

Variables/Constraints
102 104 106

Black Box
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Finite Differences

Semi-Closed

Adjoint Sens & SAND Adjoint
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Closed Optimization Models
Only function information available. Gradient and Hessian information 
cannot be obtained exactly

Nested iterative calculations in model (round-off error due to 
convergence tolerences)

How can these models be used for optimization? 

Derivative Free Optimization

NOMAD, DFO, UOBYQA

Strong convergence theory, successful on difficult problems

Reduced order models

convert to approximate models in analytic form 
(manageable size)

Closed Detailed Models Î Fully Open Simple Models

allows integration with models from other levels
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Challenge for Process Optimization
FutureGen Power Cycle (DOE/NETL)

PDE/CFD: Gas Turbine, PDE/CFD: Gas Turbine, GasifierGasifier

DAE: DAE: H2/CO2 Separation: PSAH2/CO2 Separation: PSA

Algebraic: Rest of Algebraic: Rest of FlowsheetFlowsheet
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Advanced Process Engineering Cosimulation
(Zitney and Syamlal, 2002)

Detailed CFD ModelsDetailed CFD Models

••Multiphase, reactive flowMultiphase, reactive flow

••Specialized solution proceduresSpecialized solution procedures

••Model requires ~1Model requires ~1 --10 CPU h10 CPU h

••Smooth responses expected  but  Smooth responses expected  but  
derivatives not availablederivatives not available

••Few (<10) optimization variablesFew (<10) optimization variables

Goal: ROM for integration with Goal: ROM for integration with 
other model equationsother model equations
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Optimal Operation for Gas Separation
(Jiang, Fox, B., 2004)

Pressure Swing Adsorption in Pressure Swing Adsorption in 
FutureGenFutureGen CycleCycle

••Need for high purity H2Need for high purity H2

••Possible technology to capture CO2Possible technology to capture CO2

••Respond quickly to changes in process Respond quickly to changes in process 
demanddemand

••Large, highly nonlinear dynamic Large, highly nonlinear dynamic 
separationseparation

••ExamplesExamples

••LargeLarge --scale H2/CO Separationscale H2/CO Separation

5 beds, 11 steps, > 105 beds, 11 steps, > 10 44 variables variables 
with dense with dense JacobiansJacobians , 10, 1044 DAEsDAEs

Simulated Moving Bed SeparationSimulated Moving Bed Separation

6 columns, 4 zones, > 100 6 columns, 4 zones, > 100 
variables/ variables/ DAEsDAEs with dense with dense 
JacobiansJacobians
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Black Box Optimization (Closed Models)

+ Easy to interface

+ Easily applied to legacy codes, closed

models

- Repeated model solutions

- Failure prone, no constraint handling in model

- Derivatives by finite difference (if at all) 

- (Fully Open) Reduced Order Models (ROMs)

for optimization formulations 

Optimization

Min Φ(x)

s.t. g(x) � 0

(PD)AE Model

F(z, z’, u, p, t) = 0

p                 u(t)

Proper Orthogonal Proper Orthogonal 

DecompositionDecomposition

((KarhunenKarhunen , , LoeveLoeve ……))

PCAPCA--basedbased

ROMs (ROMs (WillcoxWillcox ,,……))
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PSA Optimization
4 step Methane/Hydrogen Separation

DAEs in ROM were converted to algebraic equations
by temporal discretization (simultaneous approach)

The resultant non-linear program (NLP) was solved u sing
IPOPT solver in AMPL: optimum obtained in 3 CPU min

PSA Model: 3200 DAEs (several CPU hrs to optimize)
POD Model Reduction: reduced to just 200 DAEs
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PSA/ROM Optimization Results

Profiles for gas-phase methane mole fraction

Rigorous Model ROM

Rigorous Model ROM Rigorous Model ROM

Rigorous Model ROM

Adsorption

PressurizationDesorption

Depressurization

Hydrogen recovery increased
from 10.9% to 16.3%

Performance criteria from
rigorous model match 

ROM (high product purities)
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ROM Sufficiently Accurate for 
Optimization? 

Create ROM for Create ROM for 
CFD ModelCFD Model

Solve ROMSolve ROM --based based 
optimizationoptimization

s.ts.t . Trust Region. Trust Region

Sufficient DecreaseSufficient Decrease

In CFD Model? In CFD Model? 

Converged?Converged?

TightenTighten

Trust RegionTrust Region

StopStop

•• Apply ROMApply ROM --Based Trust Region Strategy Based Trust Region Strategy 
((FahlFahl --Sachs, Sachs, KunischKunisch --VolkweinVolkwein ,  ,  GrattonGratton --
SartenaerSartenaer --TointToint ……))

•• TR model based on ROM optimizationTR model based on ROM optimization

•• ROM matches functions/gradientsROM matches functions/gradients
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Fully Open Optimization Models

•Exact first (and higher!) derivatives available

•Single model solution – no nested calculations 

•Basis for extending NLP strategies to MINLP, 

global optimization 

•Which NLP algorithms should be used?

• Fast convergence properties

• Low complexity in dealing with extending to large-scale systems

• Exploit structures of model and optimization formulations

• Essential for many time-critical optimizations (RTO, NMPC, DRTO)

NLP

Min Φ(x)

s.t. c(x) = 0

xL � x � xU
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Real-time Optimization and Advanced Process Control
• Fewer discrete decisions
• Many nonlinearities

• Frequent, “on-line” time-critical solutions

• Higher level decisions must be feasible
• Performance communicated for higher level decisions

Planning

Scheduling

Site-wide Optimization

Real-time Optimization

Model Predictive Control

Regulatory Control 
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Decision Pyramid for Process 
Operations 

APCMPC ⊂

Off-line (open loop)

On-line (closed loop)
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Dynamic Real-time Optimization 
Integrate On-line Optimization/Control with Off-line Planning
• Consistent, first-principle models
• Consistent, long-range, multi-stage planning
• Increase in computational complexity 
• Time-critical calculations 

Applications
• Batch processes
• Grade transitions
• Cyclic reactors (coking, regeneration…)

• Cyclic processes (PSA, SMB…)

Continuous processes are never in steady state:

• Feed changes

• Nonstandard operations

• Optimal disturbance rejections

Simulation environments and first principle dynamic models are widely 
used for off-line studies

Can these results be implemented directly on-line for large-scale 
systems?

8

Planning

Scheduling

Site-wide Optimization

Real-time Optimization

Model Predictive Control

Regulatory Control 
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Dynamic Optimization Engines

Evolution of NLP Solvers:

Î for dynamic optimization, control and estimation

E.g., NPSOL and Sequential Dynamic 
Optimization - over 100 variables and constraints  
E.g, SNOPT and Multiple Shooting - over 100 
d.f.s but over 105 variables and constraints
E.g., IPOPT - Simultaneous dynamic optimization
over 1 000 000 variables and constraints

SQP rSQP Full-space
Barrier

Object Oriented Codes tailored to structure, sparse linear
algebra and computer architecture (e.g., IPOPT 3.3)
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LDPE  Plant- Multistage Dynamic Optimization

H I G H
P R E S S U R E
R E C Y C L E

L O W
P R E S S U R E
R E C Y C L E

E th y l e n e

B u t a n e
P u r g e

T o r c h

P R I M A R Y
C O M P R E S S O R

H Y P E R - C O M P R E S S O R

T U B U L A R
R E A C T O R

L D P

W a x e s

2 7  b a r s /  2 5 C

6  b a r s /  4 0 C
1 . 5  b a r s /  4 0 C

6  b a r s /  4 0 C

2 4  b a r s /  4 0 C5 6  b a rs /  4 0 C1 0 3  b a r s /  4 0 C

2 5 5  b a r s
4 0 C

1 0 1 0  b a r s
4 0 C

2 2 0 0  b a r s
8 5 C

P r e h e a t i n g
Z o n e

R e a c t i o n
Z o n e

C o o l i n g
Z o n e

2 . 5  b a r s
2 2 0 C

1 . 5  b a r s
4 0 C

2 8 5  b a r s
4 0 C

L D  V a l v e

2 7 4C

3 5 0  b a r s
2 7 0 C

O i l s

H i g h  P r e s s u r e
S e p a r a to r

L o w  P r e s s u r e
S e p a r a to r

High pressure reaction (>2000 atm) through mile-long reactor coil

Highly nonlinear model with 1000’s of chemical species (moment models)

Planning

Scheduling

Site-wide Optimization

Real-time Optimization

Model Predictive Control
Regulatory Control 



19

Monomer
Comonomer

Initiator(s)

1 2 3 NZ

z z z z

Material & Energy

Physical Properties

Zone Transitions

8 Stiffness  + Highly Nonlinear   +  Parametric Sensit ivity  +  Algebraic Coupling

500   ODEs
1000    AEs

LargeLarge --Scale Parameter EstimationScale Parameter Estimation
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LargeLarge --Scale Parameter EstimationScale Parameter Estimation

~  35 Elementary Reactions
~100 Kinetic Parameters 

� Complex Kinetic Mechanisms
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LargeLarge --Scale Parameter EstimationScale Parameter Estimation

� Parameter Estimation for Industrial Applications 

� Use Rigorous Model to Match Plant Data Directly

� Start with Standard Least-Squares Formulation

Rigorous 
Reactor Model

� Special Case of Multi-Stage Dynamic Optimization Pr oblem

� Solve using Simultaneous Collocation-Based Approach

Least-Squares

1 data set 6 data sets
x 6500   ODEs

1000    AEs
3000   ODEs
6000    AEs
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� Data Sets: Operating Conditions and Properties for Different Grades

� Match: Temperature Profiles and Product Properties

� On-line Adjusting Parameters Æ Track Evolution of Disturbances 

� Kinetic Parameters Æ Apply to Rigorous Models

� Add Data for Process Inputs (EVM) Æ remove additional uncertainties

� Single Data Set (On-line Adjusting Parameters)

� Multiple Data Sets (On-line Adjusting Parameters + Kinetics)

MultiMulti --zone Reactor Parameter Estimationzone Reactor Parameter Estimation

� EVM (On-line Adjusting Parameters + Kinetics + Process Inputs)
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Improved Match of Reactor Temperatures Profile

LargeLarge --Scale Parameter EstimationScale Parameter Estimation
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Industrial Case StudyIndustrial Case Study

� Results - Reactor Overall Monomer Conversion 
( up to 20 Different Grades )( up to 20 Different Grades )

Avg. Conversion Deviation
Base Model – 12.1 %
New Model – 2.5  %

EVM Results - 0.12 %

Predicted Conversion (%)
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IPOPT Factorization Byproduct 

KKT matrix factored by indefinite symmetric factorization

•Without regularization at solution Î sufficient second order 
conditions and uniquely estimated parameters

•Reduced Hessian cheaply available to calculate confidence 
regions 
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Exploit Structure of KKT Matrix – Laird, B. 2006

Parameter Estimation in Parallel Architectures Parameter Estimation in Parallel Architectures 

Direct Factorization MA27
Memory Bottlenecks

Factorization Time Scales 
Superlinearly with Data sets

Block-bordered Diagonal 
Structure

Coarse-Grained Parallelization using 
Schur Complement Decomposition

IPOPT 3.x architecture supports tailored structured decompositions



27

Computational Results – LDPE Reactor EVM Problem
Parameter Estimation in Parallel Architectures Parameter Estimation in Parallel Architectures 
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On-line Issues: Model Predictive Control (NMPC)
Zavala, Laird, B. (2006, 2007)

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
variables

ysp : set points
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NMPC Subproblem

Why NMPC?

� Track a profile –evolve from 
linear dynamic models (MPC)

� Severe nonlinear dynamics (e.g, 
sign changes in gains)

� Operate process over wide range 
(e.g., startup and shutdown)

Model Updater
( )
( )dpuyzG

dpuyzFz

,,,,0

,,,,

=
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Challenge: Computational Delay Challenge: Computational Delay ÆÆ Performance and Stability?Performance and Stability?
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Nonlinear Model Predictive Control Nonlinear Model Predictive Control ––
Parametric ProblemParametric Problem
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Advanced Step NMPCAdvanced Step NMPC
Combine advanced step with sensitivity to solve NLP  in background 

(between steps) – not on-line

Solve  P(z ) in background (between t0 and t1)

Sensitivity to updated problem to get (z0, u0)
Solve  P(z +1) in background with new (z0, u0)
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Industrial Case Study – Grade Transition Control

Simultaneous Collocation-Based
Approach

27,135 constraints, 9630 LB & UB

Off-line Solution with IPOPT

Feedback 
Every 6 min

Process Model: 289 ODEs, 100 AEs
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Nonlinear Model Predictive ControlNonlinear Model Predictive Control
Grade Transition to Reduce MW of LDPEGrade Transition to Reduce MW of LDPE

Ideal NMPC controller - computational delay not considered
Time delays as disturbances in NMPC

Optimal Feedback Policy Æ (On-line Computation 351 CPU s)
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Nonlinear Model Predictive ControlNonlinear Model Predictive Control
� Optimal Policy vs. NLP Sensitivity -Shifted Æ (On-line Computation 1.04 CPU s)

Very Fast Close-to-Optimal Feedback
Large-Scale Rigorous Models

Analogous Strategy Developed for Moving Horizon Est imationAnalogous Strategy Developed for Moving Horizon Est imation
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Summary
Optimization plays a central role in all aspects of chemical 
process engineering
• Challenging Real-World Applications
• Modeling-design-control-operations
• Conflict between detailed models (off-line analysis) and time 

critical computation (on-line optimization)

Challenge to develop efficient optimization strategies with 
multiple model levels
• Closed -- Semi-closed – Fully Open

Advanced algorithms needed to integrate optimization 
models 
• Across process systems
• Across operating time scales
• Across functionalities
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Related Papers at this Conference 
(and more details)

Reduced Order Optimization Models
• 429a “Reduced-Order Model for Dynamic Optimization of Pressure 

Swing Adsorption” A. Agarwal, L. T. Biegler, S. E. Zitney
• 398c “Advanced Process Engineering Co-Simulation Using CFD-Based 

Reduced Order Models,” Y-D Lang, L. T. Biegler, S. Munteanu, J. 
Madsen, S. E. Zitney

Open Optimization Models and Parallel Decomposition
• 149d “Efficient Parallel Solution of Dae Constrained Optimization 

Problems with Loosely Coupled Algebraic Components,” C. D. Laird, V. 
M. Zavala, L. T. Biegler

• 531a “Modeling and Optimization of Polymer Electrolyte Membrane 
Fuel Cells,” P. Jain, L. T. Biegler, M. S. Jhon

Fast NMPC and MHE
• 149b “A Moving Horizon Estimation Algorithm Based on NLP 

Sensitivity,” V. M. Zavala, L. T. Biegler
• 256a “Stability and Performance Analysis of Nlp Sensitivity-Based 

NMPC Controllers,” V. M. Zavala, L. T. Biegler 
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