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A Single-Model, Single-Algorithm Problem (ODE) -
 

Adiabatic 
Operation of a Tubular Reactor for Cracking of Acetone

Algorithm

Model



A Single-Model, Single-Algorithm Problem (NLE) 
Complex Chemical Equilibrium

Solution algorithm

Chemical Equilibrium 
equations

Mole Balance Equations 



Single Model – Single Algorithm Problem 
Solution with Software Packages

Mathematical
Model

Physical 
Properties

Solution 
Algorithm

Documentation

Mathematical Software Package

User Supplied

Using this approach, the USER supplies the mathematical model and the 
physical properties and the package provides the numerical solution. 



A Multiple-Model, Single-Algorithm (MMSA) Problem
Three Modes in the Operation of the Semi-batch Bioreactor 

S (substrate reactant) + X (cell) = P (product) + nX



A Multiple-Model, Single Algorithm (MMSA) Problem
Polymath Model of the Initiation Mode of Operation 



Multiple Model – Multiple Algorithm Problem 
Solution with Software Packages

Mathematical
Model

Physical 
Properties

Documentation

Solution 
Algorithm

Combine Together 
Models and 
Algorithms by 
Programming for 
Repetitive Runs and 
Optimization



A Single-Model, Multiple Algorithm Problem
Simultaneous Multicomponent

 
Diffusion of Gases*

Gases A and B are diffusing through stagnant gas C  between 
two points 1 and 2 where the compositions and distance apart 
are known.  Calculate and plot the concentration profiles and 
determine the molar fluxes.

*p. 10.8 in Cutlip and Shacham,  Problem Solving In Chemical and Biochemical 
Engineering  with Polymath, Excel and MATLAB. Prentice-Hall, 2008.



Simultaneous Multicomponent
 

Diffusion of Gases
The Stefan-Maxwell equations describe this multi-component 
diffusion process

where



Simultaneous Multicomponent
 

Diffusion of Gases

The parameters NA

 

and NB

 

(the molar fluxes of components A 
and B respectively) are unknown. They can be calculated using 
the boundary conditions: at point 2 (z = 0.001m) CA = 0 and 
CB = 2.701. 
Estimates of NA

 
and NB

 
can be obtained from application of 

the Fick's law assuming simple binary diffusion. Estimates for 
NA

 

and NB

 

can be obtained from:



Simultaneous Multi-Component Diffusion of Gases –
 POLYMATH Code

No. Equation # Comment 
1 d(CA)/d(z) = (xA * NB - xB * NA) / DAB + (xA * NC - xC * NA) / DAC # Concentration of A (g-mol/L) 
2 d(CB)/d(z) = (xB * NA - xA * NB) / DAB + (xB * NC - xC * NB) / DBC # Concentration of B (g-mol/L) 
3 d(CC)/d(z) = (xC * NA - xA * NC) / DAC + (xC * NB - xB * NC) / DBC # Concentration of C (g-mol/L) 
4 NB = -0.0003363 # Molal flux of component B (kg-mol/m^2*s) 
5 NA = 2.396e-5 # Molal flux of component A (kg-mol/m^2*s) 
6 DAB = 1.47e-4  # Diffusivity of A through B (m^2/s) 
7 NC = 0  # Molal flux of stagnant component C (kg-mol/m^2*s) 
8 DAC = 1.075e-4# Diffusivity of A through C (m^2/s) 
9 DBC = 1.245e-4 # Diffusivity of B through C (m^2/s) 

10 CT = 0.2 / (82.057e-3 * 328) # Gas concentration g-mol/L 
11 xA = CA / CT # Mole fraction of A 
12 xB = CB / CT # Mole fraction of B 
13 xC = CC / CT # Mole fraction of C 
14 z(0) = 0 # Length coordinate at point 1 
15 CB(0) = 0 # Concentration of B at point 1 
16 CA(0) = 0.0002229 # Concentration of A at point 1 
17 CC(0) = 0.007208 # Concentration of C at point 1 
18 z(f) = 0.001 # Length coordinate at point 2 

 

Estimated Values

Iterations on the NA and NB values have to be carried out  to reach the 
specified final values of CA, CB and CC



Simultaneous Multi-Component Diffusion of Gases –
 POLYMATH Solution for Estimated NA and NB values

No match between the 
specified and 
calculated final values 



Application of the Newton-Raphson
 

Method for the Solution 
of Two Point Boundary Value Problems 

Let us define x
 

as the vector of unknown parameters 
(in this particular case x

 
= (NA

 

NB

 

)T ) and f
 

as a vector 
of functions representing the difference between the 
desired and calculated concentration values as point 2 , 
thus 



The Newton-Raphson
 

Method using Forward Difference to 
Calculate the Derivatives

The Newton-Raphson (NR) method can be written

where k is the iteration number, x0 is the initial 
estimate and ∂f/∂x

 
is the matrix of partial derivatives 

at x
 

= xk

 

. The matrix of partial derivatives can be 
calculated using forward differences, thus

where δj

 

is a vector containing the value of δj

 

at the jth 

position and zeroes elsewhere..



Simultaneous Multi-Component Diffusion of Gases –
 

A 
MATLAB Function Generated by POLYMATH

Input parameters are transferred 
to the function in an array

Output parameters should be 
placed into a column vector



Template for Solving an ODE System*

*Available in the HELP section of POLYMATH

The MATLAB library function ode45
 is used to solve the ODE system

Data Generated by POLYMATH



Simultaneous Multi-Component Diffusion of Gases –
 

Newton-
 Raphson

 
Iterations for Identifying the Parameters 

Input NA

 

and NB

 

as a parameters into the function

Newton-Raphson iterations loop

Initial estimates for NA

 

and NB

Derivative calculation loop



Multi-Component Diffusion –
 

Results of Parameter Values
Note that five NR iterations, as shown below, are required for 
convergence with error tolerance of εd = 10-10. The iterations of 
the NR method are stopped when 

and where εd is the desired error tolerance set at 1x10-10.  
The converged solution values are NA = 2.1149e-5 and 

NB = -4.1425e-4. Using these solution values, the difference 
between the calculated and desired values of CA and CB at point 
2 are <10-10.



Modeling and Optimization of a Chemostat

 

with Imperfect Mixing*

*p. 14.11 in Cutlip and Shacham,  Problem Solving In Chemical and Biochemical 
Engineering  with Polymath, Excel and MATLAB. Prentice-Hall, 2008.

No. Equation # Comment 
1 f(S1) = F1*S0+F2*S2-(1/Yxs)*(mum*S1/(Ks+S1))*X1*V1-F1*S1-F2*S1 

         # Substrate balance on the well mixed volume 
2 f(S2) = F2*S1-(1/Yxs)*(mum*S2/(Ks+S2))*X2*V2-F2*S2 

         # Substrate balance on the stagnant volume 
3 f(X1)=F2*X2+(mum*S1/(Ks+S1)-kd)*X1*V1-F1*X1-F2*X2 

        # Cell balance on the well mixed volume 
4 f(X2)=F2*X1+(mum*S2/(Ks+S2)-kd)*X2*V2-F2*X2 

        # Cell balance on the stagnant volume 
5 P1=Yps*(S0-S1) # Production (g/dm^3) 
6 D=F1/(V1+V2) # Dilution rate (1/hr) 
7 S0 = 0.6 # Feed substrate concentration (g/dm^3) 
8 kd = 0.002 
9 Yxs=0.4 # Yield coefficient (g cells/g substrate)  
10 Yps=.2 # Yield coefficeint (g product/g substrate) 
11 Ks = 0.2 # Monod constant (g substrate/L) 
12 mum = 0.2 #Maximal specific growth rate (1/hr) 
13 V1=1.7  # Well mixed voume (dm^3) 
14 V2=0.3 # Stagnant volume (dm^3) 
15 F1=.17 # Feed flow rate to the well mixed volume (dm^3/hr) 
16 F2=0.2*F1 # Feed flow rate to the stagnant volume (dm^3/hr) 
17 PR_DX1=D*X1 # Cell production rate (g/hr) 
18 PR_DP1=D*P1 # Product production rate (g/hr) 
19 S1(0) = 0 
20 S2(0)=0 
21 X1(0)=0.2 
22 X2(0)=0.4 

Well mixed volume

Stagnant volume

Maximize Cell production rate or 
Product production rate as function 

of Dilution rate



Modeling and Optimization of a Chemostat
 

with Imperfect 
Mixing –

 
Results for D = 0.06 (1/hr) and D = 0.085 (1/hr) 

Point by point calculation of the objective function values may not be the most 
efficient way for finding the optimum



No. Equation % Comment 
1 function fx = MNLEfun(x);  
2 S1 = x(1);  S2 = x(2); 
3 X1 = x(3);  X2 = x(4); 
4 Yps = .2; %Yield coefficeint (g product/g substrate)  
5 F1 = .17; %Feed flow rate to the well mixed volume (dm^3/hr)  
6 S0 = .6; %Feed substrate concentration (g/dm^3)  
7 kd = .002;  % Cell death rate (1/hr) 
8 Yxs = .4; %Yield coefficient (g cells/g substrate)  
9 P1 = Yps * (S0 - S1); %Production (g/dm^3)  

10 Ks = .2; %Monod constant (g substrate/L)  
11 mum = .2; %Maximal specific growth rate (1/hr)  
12 V1 = 1.7; %Well mixed volume (dm^3)  
13 V2 = .3; %Stagnant volume (dm^3)  
14 D = F1 / (V1 + V2); %Dilution rate (1/hr)   
15 F2 = .2 * F1; %Feed flow rate to the stagnant volume (dm^3/hr)  
16 PR_DX1 = D * X1; %Cell production rate (g/hr)  
17 PR_DP1 = D * P1; %Product production rate (g/hr)  
18 fx(1,1) = F1 * S0 + F2 * S2 - (1 / Yxs * mum * S1 / (Ks + S1) * X1 * V1) - (F1 * S1) - (F2 * S1);  
19 fx(2,1) = F2 * S1 - (1 / Yxs * mum * S2 / (Ks + S2) * X2 * V2) - (F2 * S2);  
20 fx(3,1) = F2 * X2 + (mum * S1 / (Ks + S1) - kd) * X1 * V1 - (F1 * X1) - (F2 * X2);  
21 fx(4,1) = F2 * X1 + (mum * S2 / (Ks + S2) - kd) * X2 * V2 - (F2 * X2);  

Modeling and Optimization of a Chemostat
 

–
 

A MATLAB 
Function Generated by POLYMATH

Input parameters are transferred 
to the function in an array

Output parameters should be 
placed into a column vector



No. Equation  
1 options = optimset('Diagnostics',['off'],'TolFun',[1e-9],'TolX',[1e-9]);  
2 Yps = 0.2;  S0 = 0.6;  kd = 0.002;  Yxs = 0.4;  Ks = 0.2;  
3 mum = 0.2;  V1 = 1.7;  V2 = 0.3;  
4 F1=0.1; 
5 xguess = [0 0 0.2 0.4]; % initial guess vector  
6 for k=1:16 
7     xsolv=fsolve(@MNLEfun,xguess,options,F1);  
8     S1(k)=xsolv(1); S2(k)=xsolv(2); X1(k)=xsolv(3); X2(k)=xsolv(4); 
9     F1list(k)=F1; D(k) = F1 / (V1 + V2); P1(k)= Yps * (S0 - S1(k)); 
10     PR_DX1(k) = D(k) * X1(k);  PR_DP1(k) = D(k) * P1(k); 
11     F1=F1+0.01; 
12 end 

 

Modeling and Optimization of a Chemostat
 

–
 

MATLAB Main 
Program and Results of Parametric Runs

The MATLAB library function fsolv is 
used to solve the system of equations.

Calculation of the production rates 
for parametric runs 
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No. Command
23 Lb=0.1;
24 Ub=0.25;
25  [maxF1, PR_DX] = fminbnd(@ProdRateCell,Lb,Ub); 
26 disp([' Highest Production Rate for Cells is ' num2str(-PR_DX) ' at Dilution Rate of ' num2str(maxF1/(V1+V2))])
27  [maxF1, PR_DP] = fminbnd(@ProdRateProd,Lb,Ub); 
28 disp([' Highest Production Rate for Product is ' num2str(-PR_DP) ' at Dilution Rate of ' num2str(maxF1/(V1+V2

29 function PR_DX=ProdRateCell(F1)
30 V1 = 1.7; 
31 V2 = 0.3; 
32 xguess = [0 0 0.2 0.4]; % initial guess vector 
33 options = optimset('Diagnostics',['off'],'TolFun',[1e-9],'TolX',[1e-9]); 
34  xsolv=fsolve(@MNLEfun,xguess,options,F1); 
35  X1=xsolv(3); 
36  D = F1 / (V1 + V2); 
37  PR_DX = -D* X1;  

Modeling and Optimization of a Chemostat

The MATLAB library function fsolv is 
used to solve the system of equations

Objective function to be minimized
Highest Production Rate for Cells is 0.01207 at Dilution Rate of 0.079932

 Highest Production Rate for Product is 0.0066643 at Dilution Rate of 0.083729

The MATLAB library function fminbnd 
is used to find the minimum



CONCLUSIONS
For Single-Model, Single-Algorithm
problems, a software package and the user 
supplied mathematical model and property 
data are sufficient for achieving the solution.

For Multiple-Model and/or Multiple-Algorithm
problems, the number of possible 
combinations is so large that it is impossible 
to provide pre-tailored solution algorithms 
and programming is essential .

For the later a combinations of software 
packages (such as POLYMATH and 
MATLAB) provides the most  efficient means 
for solution.
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