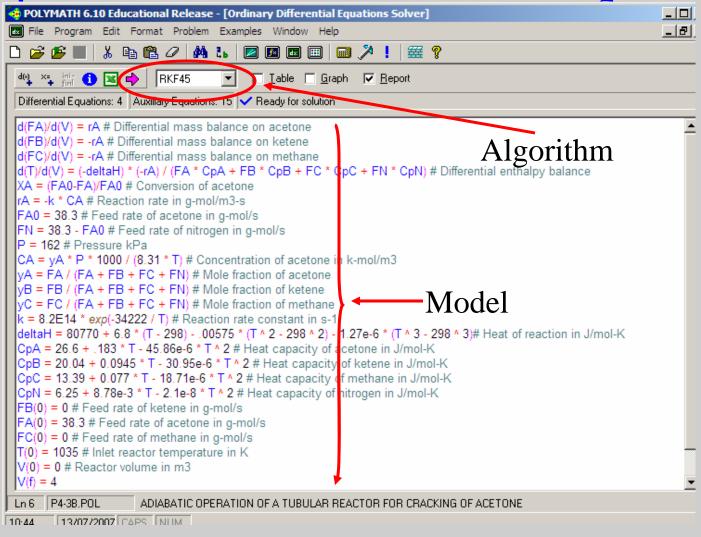
Efficient Solution of Multiple-Model, Multiple-Algorithm Problems in Undergraduate and Graduate Education

Mordechai Shacham Ben Gurion University of the Negev Beer-Sheva, Israel

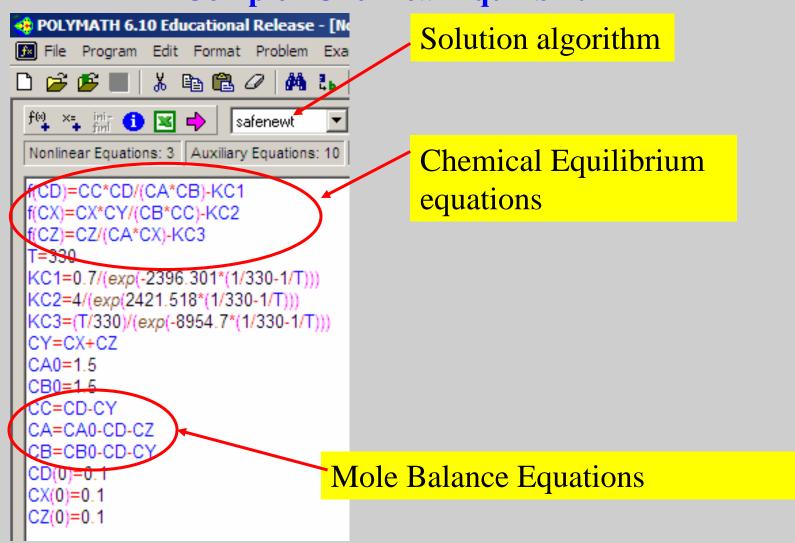
Michael Cutlip
University of Connecticut
Storrs, CT

Michael Elly Intel Corp., Qiryat Gat, Israel

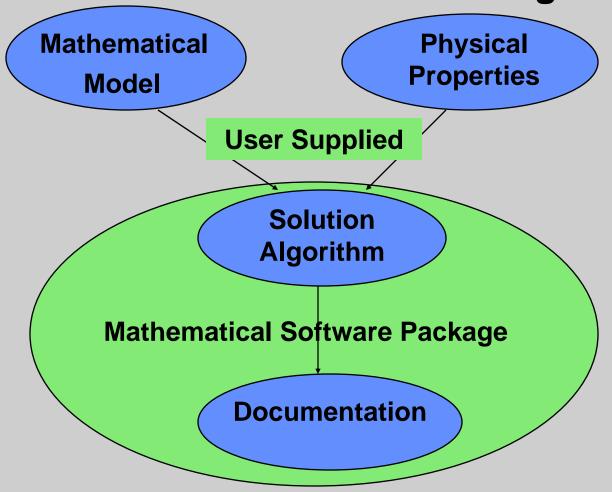
A Single-Model, Single-Algorithm Problem (ODE) - Adiabatic Operation of a Tubular Reactor for Cracking of Acetone



A Single-Model, Single-Algorithm Problem (NLE) Complex Chemical Equilibrium



Single Model – Single Algorithm Problem Solution with Software Packages



Using this approach, the USER supplies the mathematical model and the physical properties and the package provides the numerical solution.

A Multiple-Model, Single-Algorithm (MMSA) Problem Three Modes in the Operation of the Semi-batch Bioreactor

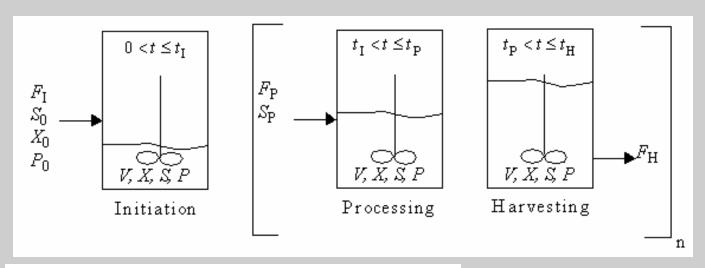


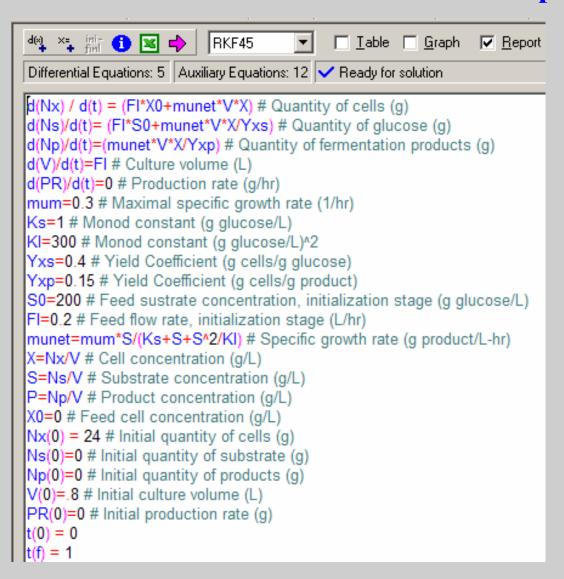
Table 14–7 Differential Equations for Fed Batch and Cyclic Fed Batch Bioreactors

		•		
Differential Initiation Equations		Processing	Harvesting	
$\frac{dN_X}{dt}$ =	$F_{\rm I} X_0 + \mu_{\rm not} XV$	$\mu_{\text{net}} XV$	– $F_{\rm H}X$ + $\mu_{\rm net}XV$	
$\frac{dN_S}{dt} = F_1 S_0 - \frac{\mu_{\text{nat}} XV}{Y_{\text{X/S}}}$		$F_p S_p - \frac{\mu_{pet} XV}{Y_{X/S}}$	$-F_HS - \frac{\mu_{\text{not}}XV}{Y_{\text{X/S}}}$	
$\frac{dN_P}{dt} = \frac{\mu_{\text{net}}XV}{Y_{X/P}}$		$\frac{\mu_{\text{net}}XV}{Y_{\text{X/P}}}$	$-F_HP + \frac{\mu_{\text{net}}XV}{Y_{X/P}}$	
$\frac{dV}{dt}$ =	$F_{ m I}$	$F_{\mathbf{p}}$	- F _H	

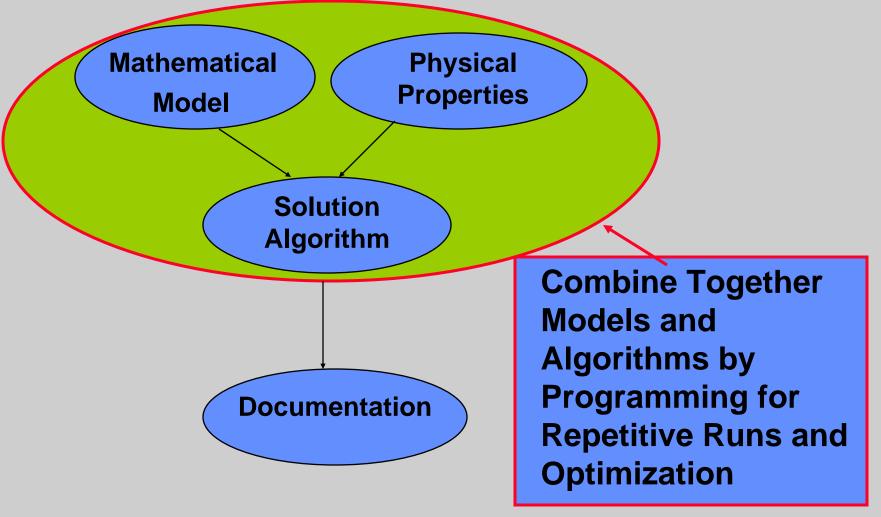
$$\mu_{\text{mat}} = \mu_g = \frac{\mu_m S}{K_S + S + S^2 / K_I}$$

S (substrate reactant) + X (cell) = P (product) + nX

A Multiple-Model, Single Algorithm (MMSA) Problem Polymath Model of the Initiation Mode of Operation



Multiple Model – Multiple Algorithm Problem Solution with Software Packages



A Single-Model, Multiple Algorithm Problem Simultaneous Multicomponent Diffusion of Gases*

Gases A and B are diffusing through stagnant gas C between two points 1 and 2 where the compositions and distance apart are known. Calculate and plot the concentration profiles and determine the molar fluxes.

Component	Point 1 Concentration kg-mol/m ³	Point 2 Concentration kg-mol/m ³	Diffusivities at 0.2 atm m ² /s
A	2.229×10^{-4}	0	$D_{AC} = 1.075 \times 10^{-4}$
В	В 0	2.701×10^{-3}	$D_{BC} = 1.245 \! \times \! 10^{-4}$
C	7.208×10^{-3}	4.730×10^{-3}	$D_{AB} = 1.47 \times 10^{-4}$

^{*}p. 10.8 in Cutlip and Shacham, *Problem Solving In Chemical and Biochemical Engineering with Polymath, Excel and MATLAB*. Prentice-Hall, 2008.

Simultaneous Multicomponent Diffusion of Gases

The Stefan-Maxwell equations describe this multi-component diffusion process

$$\frac{dC_A}{dz} = \frac{(x_A N_B - x_B N_A)}{D_{AB}} + \frac{(x_A N_C - x_C N_A)}{D_{AC}} \label{eq:dcap}$$

$$\frac{dC_B}{dz} = \frac{(x_B N_A - x_A N_B)}{D_{AB}} + \frac{(x_B N_C - x_C N_B)}{D_{BC}}$$

$$\frac{dC_C}{dz} = \frac{(x_C N_A - x_A N_C)}{D_{AC}} + \frac{(x_C N_B - x_B N_C)}{D_{BC}}$$

where

$$D_{BA}$$
 = D_{AB} , D_{CA} = D_{AC} , and D_{CB} = D_{BC}

Simultaneous Multicomponent Diffusion of Gases

$$\frac{dC_A}{dz} = \frac{(x_A N_B - x_B N_A)}{D_{AB}} + \frac{(x_A N_C - x_C N_A)}{D_{AC}}$$

The parameters N_A and N_B (the molar fluxes of components A and B respectively) are unknown. They can be calculated using the boundary conditions: at point 2 (z = 0.001m) CA = 0 and CB = 2.701.

Estimates of NA and NB can be obtained from application of the Fick's law assuming simple binary diffusion. Estimates for N_A and N_B can be obtained from:

$$N_A = -D_A \frac{(C_A |_2 - C_A |_1)}{(z|_2 - z|_1)} = -1.075 \times 10^{-4} \frac{(0 - 2.229 \times 10^{-4})}{(0.001 - 0)} = 2.396 \times 10^{-5}$$

$$N_B = -D_{BC} \frac{(C_B|_2 - C_B|_1)}{(z|_2 - z|_1)} = -1.245 \times 10^{-4} \frac{(2.701 \times 10^{-3} - 0)}{(0.001 - 0)} = -3.363 \times 10^{-4}$$

Simultaneous Multi-Component Diffusion of Gases – POLYMATH Code

No.	Equation # Comment				
1	d(CA)/d(z) = (xA * NB - xB * NA) / DAB + (xA * NC - xC * NA) / DAC # Concentration of A (g-mol/L)				
2	d(CB)/d(z) = (xB * NA - xA * NB) / DAB + (xB * NC - xC * NB) / DBC # Concentration of B (g-mol/L)				
3	d(CC)/d(z) = (xC * NA - xA * NC) / DAC + (xC * NB - xB * NC) / DBC # Concentration of C (g-mol/L)				
4	MB = -0.0003363 # Molal flux of component B (kg-mol/m^2*s)				
5	NA = 2.396e-5 # Wolal flux of component A (kg-mol/m^2*s)				
6	DAB = 1.47e-4 # Diffusivity of A through B (m^2/s)				
7	NC = 0 # Molal flux of stagnant component C (kg-mol/m^2*s)				
8	DAC = $1.075e-4\#$ Diffusivity of A through C (m ² /s)				
9	DBC = 1.245e-4 # Diffusivity of B through C (m^2/s)				
10	CT = 0.2 / (82.057e-3 * 328) # Gas concentration g-mol/L Estimated Values				
11	xA = CA / CT # Mole fraction of A				
12	xB = CB / CT # Mole fraction of B				
13	xC = CC / CT # Mole fraction of C				
14	z(0) = 0 # Length coordinate at point 1				
15	CB(0) = 0 # Concentration of B at point 1				
16	CA(0) = 0.0002229 # Concentration of A at point 1				
17	CC(0) = 0.007208 # Concentration of C at point 1				
18	z(f) = 0.001 # Length coordinate at point 2				

Iterations on the NA and NB values have to be carried out to reach the specified final values of CA, CB and CC

Simultaneous Multi-Component Diffusion of Gases – POLYMATH Solution for Estimated N_A and N_B values

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	CA	0.0002229	-1.692E-05	0.0002229	-1.692E-05
2	СВ	0	0	0.002284	0.002284
3	CC	0.007208	0.0051638	0.007208	0.0051638
	cor.	0.0074000	0.0074000	0.0074000	0.0074000

No match between the specified and calculated final values

15	хC	0.9700056	0.6949123	0.9700056	0.6949123
16	z	0	0	0.001	0.001

Point 1 Concentration kg-mol/m ³	Point 2 Concentration kg/mol/m ³	
2.229×10^{-4}	0	
0	2.701×10^{-3}	
7.208×10^{-3}	4.730×10^{-3}	
	Concentration kg-mol/m 3 2.229×10^{-4} 0	

Application of the Newton-Raphson Method for the Solution of Two Point Boundary Value Problems

Let us define \mathbf{x} as the vector of unknown parameters (in this particular case $\mathbf{x} = (N_A N_B)^{\mathrm{T}}$) and \mathbf{f} as a vector of functions representing the difference between the desired and calculated concentration values as point 2, thus

$$\mathbf{f} = egin{bmatrix} C_A \mid_2 & -0 \ C_B \mid_2 & -2.701 imes 10^{-3} \end{bmatrix}$$

The Newton-Raphson Method using Forward Difference to Calculate the Derivatives

The Newton-Raphson (NR) method can be written

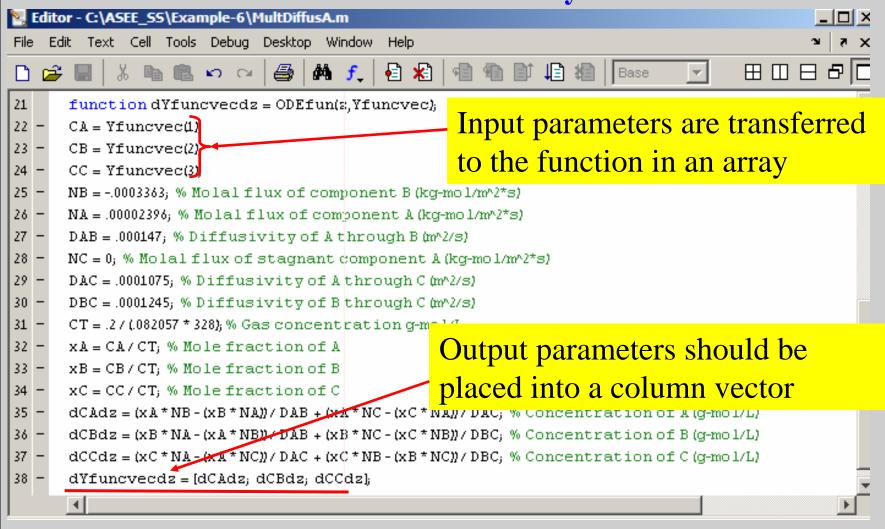
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{\partial \mathbf{f}}{\partial \mathbf{x}}^{-1} \mathbf{f}(\mathbf{x}_k) \quad k = 0, 1, 2...$$

where k is the iteration number, \mathbf{x}_0 is the initial estimate and $\partial \mathbf{f}/\partial \mathbf{x}$ is the matrix of partial derivatives at $\mathbf{x} = \mathbf{x}_k$. The matrix of partial derivatives can be calculated using forward differences, thus

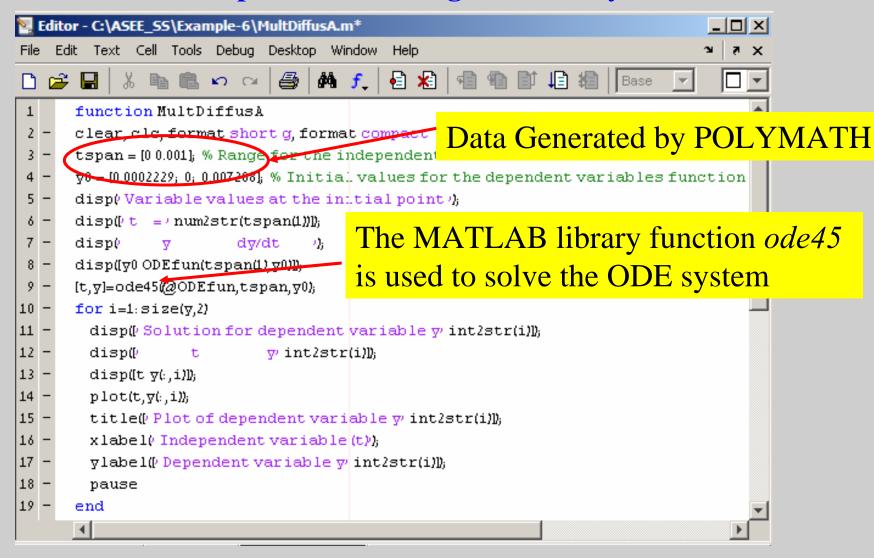
$$\frac{\partial f_i}{\partial x_j} = \frac{f_i(\mathbf{x}_k + \mathbf{\delta}_j) - f_i(\mathbf{x}_k)}{\mathcal{S}_j} \quad i = 1, 2; \quad j = 1, 2$$

where δ_j is a vector containing the value of δ_j at the j^{th} position and zeroes elsewhere..

Simultaneous Multi-Component Diffusion of Gases – A MATLAB Function Generated by POLYMATH

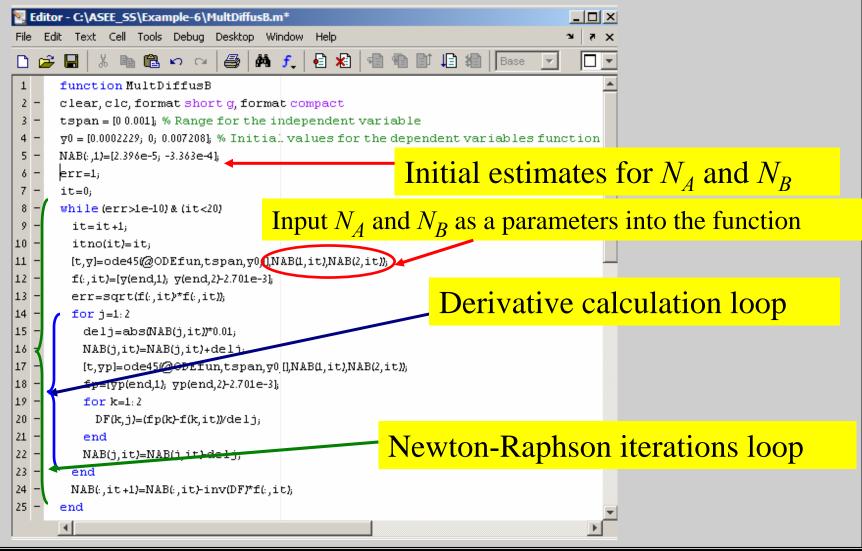


Template for Solving an ODE System*



*Available in the HELP section of POLYMATH

Simultaneous Multi-Component Diffusion of Gases – Newton-Raphson Iterations for Identifying the Parameters



Multi-Component Diffusion – Results of Parameter Values

Note that five NR iterations, as shown below, are required for convergence with error tolerance of $\varepsilon_d = 10^{-10}$. The iterations of the NR method are stopped when $\|\mathbf{f}(\mathbf{x}_k)\| \le \varepsilon_d$

and where ε_d is the desired error tolerance set at $1x10^{-10}$.

The converged solution values are $N_A = 2.1149\text{e-}5$ and $N_B = -4.1425\text{e-}4$. Using these solution values, the difference between the calculated and desired values of C_A and C_B at point 2 are $<10^{-10}$.

Iteration				
No.	N_{A}	N _B	f ₁	f ₂
0	2.3960E-05	-3.3630E-04	3.35E-05	-5.99E-03
1	2.2076E-05	-1.7614E-04	7.53E-06	-1.40E-03
2	2.1252E-05	-3.8575E-04	8.52E-07	-1.49E-04
3	2.1150E-05	-4.1375E-04	1.77E-08	-2.56E-06
4	2.1149E-05	-4.1424E-04	7.05E-11	-6.41E-09
5	2.1149E-05	-4.1425E-04	1.67E-13	-1.43E-11

Modeling and Optimization of a Chemostat with Imperfect Mixing*

No. Equation # Comment f(S1) = F1*S0+F2*S2-(1/Yxs)*(mum*S1/(Ks+S1))*X1*V1-F1*S1-F2*S1# Substrate balance on the well mixed volume f(S2) = F2*S1-(1/Yxs)*(mum*S2/(Ks+S2))*X2*V2-F2*S2# Substrate balance on the stagnant volume f(X1)=F2*X2+(mum*S1/(Ks+S1)-kd)*X1*V1-F1*X1-F2*X2 3 # Cell balance on the well mixed volume f(X2)=F2*X1+(mum*S2/(Ks+S2)-kd)*X2*V2-F2*X2# Cell balance on the stagnant volume P1=Yps*(S0-S1) # Production (g/dm^3) 5 D=F1/(V1+V2) # Dilution rate (1/hr) 6 S0 = 0.6 # Feed substrate concentration (g/dm^3) 8 kd = 0.0029 Yxs=0.4 # Yield coefficient (g cells/g substrate) Yps=.2 # Yield coefficeint (g product/g substrate) 10 Ks = 0.2 # Monod constant (g substrate/ 11 mum = 0.2 #Maximal specific growth ate (1/hr) 12 V1=1.7 # Well mixed voume (dm/3) 13 V2=0.3 # Stagnant volume (dpr/3) F1=.17 # Feed flow rate to the well mixed volume (dm^3/hr) 15 F2=0.2*F1 # Feed flow rate to the stagnant volume (dm^3/hr) 16 PR DX1=D*X1 # Cell production rate (g/hr) 17 PR DP1=D*P1 # Product production rate (g/hr) 18 19 S1(0) = 020 S2(0)=021 X1(0)=0.2

22

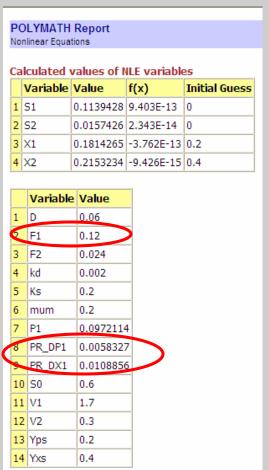
X2(0)=0.4

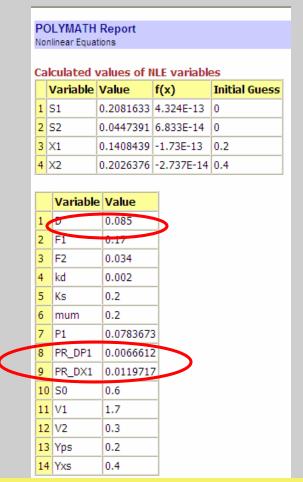
Maximize Cell production rate or Product production rate as function of Dilution rate

Well mixed volume F_1 S_0 V_1 F_2 S_1 X_1 Y_2 Y_2 Y_2 Y_2 Y_2 Y_2 Y_2 Y_3 Stagnant volume

*p. 14.11 in Cutlip and Shacham, *Problem Solving In Chemical and Biochemical Engineering with Polymath, Excel and MATLAB*. Prentice-Hall, 2008.

Modeling and Optimization of a Chemostat with Imperfect Mixing – Results for D = 0.06 (1/hr) and D = 0.085 (1/hr)





Point by point calculation of the objective function values may not be the most efficient way for finding the optimum

Modeling and Optimization of a Chemostat – A MATLAB Function Generated by POLYMATH

```
No.
     Equation % Comment
     function fx = MNLEfun(x):
     S1 = x(1); S2 = x(2);
 3
     X1 = x(3); X2 = x(4);
     Yps = .2; %Yield coefficeint (p product/g substrate)
     F1 = .17; %Feed flow rate to the well mixed volume (dm^3/hr)
     S0 = .6; %Feed substrate concentration (g/dm^3)
     kd = .002; % Cell death rate (1/hr)
     Yxs = .4; %Yield coefficient (g cells/g substrate) Input parameters are transferred
     P1 = Yps * (S0 - S1); %Production (g/dm^3)
                                                   to the function in an array
10
     Ks = .2; %Monod constant (g substrate/L)
11
     mum = .2; %Maximal specific growth rate (1/hr)
                                                         Output parameters should be
12
    V1 = 1.7; %Well mixed volume (dm^3)
13
     V2 = .3; %Stagnant volume (dm^3)
                                                         placed into a column vector
     D = F1 / (V1 + V2); %Dilution rate (1/hr)
14
    F2 = .2 * F1; %Feed flow rate to the stagnant volume (dm^3/hr)
15
16
    PR DX1 = D * X1; %Cell production rate (g/hr)
     PR DP1 = D * P1: %Product production rate (q/hr)
17
    fx(1,1) = F1 * S0 + F2 * S2 - (1 / Yxs * mum * S1 / (Ks + S1) * X1 * V1) - (F1 * S1) - (F2 * S1);
18
    f_{x}(2,1) = F2 * S1 - (1 / Yxs * mum * S2 / (Ks + S2) * X2 * V2) - (F2 * S2);
19
    fx(3,1) = F2 * X2 + (mum * S1 / (Ks + S1) - kd) * X1 * V1 - (F1 * X1) - (F2 * X2);
20
    fx(4,1) = F2 * X1 + (mum * S2 / (Ks + S2) - kd) * X2 * V2 - (F2 * X2);
```

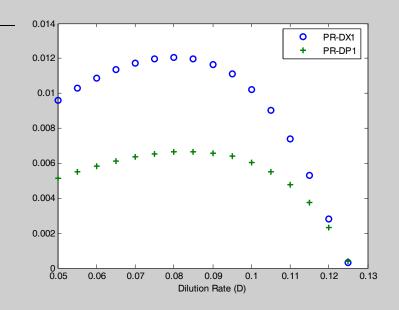
Modeling and Optimization of a Chemostat – MATLAB Main Program and Results of Parametric Runs

No. Equation 1 options = optimset('Diagnostics',['off'],'TolFun',[1e-9],'TolX',[1e-9]); 2 Yps = 0.2; S0 = 0.6; kd = 0.002; Yxs = 0.4; Ks = 0.2; 3 mum = 0.2; V1 = 1.7; V2 = 0.3;

- 4 F1=0.1:
- 5 xguess = [0 0 0.2 0.4]; % initial guess vector
- 6 for k=1:16
- 7 xsolv=fsolve(@MNLEfun,xguess,options,F1)>
- 8 S1(k)=xsolv(1); S2(k)=xsolv(2); X1(k)=xsolv(3); X2(k)=xsolv(4);
- 9 F1list(k)=F1; D(k) = F1 / (V1 + V2); P1(k)= Yps * (S0 S1(k));
- 0 $PR_DX1(k) = D(k) * X1(k); PR_DP1(k) = D(k) * P1(k);$
- 11 ◀ F1=F1+0.01;
- 12 end

The MATLAB library function fsolv is used to solve the system of equations.

Calculation of the production rates for parametric runs



Modeling and Optimization of a Chemostat

```
No. Command
23 Lb=0.1:
24 Ub=0.25;
25 [maxF1, PR DX] = fminbnd(@ProdRateCell,Lb,Ub);
26 disp([' Highest Production Rate for Cells is 'num2str(-PR_DX) ' at Dilution Rate of 'num2str(maxF1/(V1+V2))])
27 [maxF1, PR_DP] = fminbnd(@ProdRateProd,Lb,Ub);
28 disp([' Highest Production Rate for Product is 'num2str(-PR_DP) 'at Dilution Rate of 'num2str(maxF1/(V1+V2
                                              The MATLAB library function fminbnd
29 function PR_DX=ProdRateCell(F1)
30 V1 = 1.7:
                                              is used to find the minimum
31 V2 = 0.3:
32 xguess = [0 0 0.2 0.4]; % initial guess vector
33 options = optimset('Diagnostics', ['off'], 'TolFun', [1e-9], 'TolX', [1e-9]);
34 xsolv=fsolve(@MNLEfun,xguess,options,F1);
                                               The MATLAB library function fsolv is
35 \quad X1=xsolv(3);
                                               used to solve the system of equations
36 D = F1 / (V1 + V2);
37 PR DX = -D* X1;
                                               Objective function to be minimized
```

Highest Production Rate for Product is 0.0066643 at Dilution Rate of 0.083729

Highest Production Rate for Cells is 0.01207 at Dilution Rate of 0.079932

CONCLUSIONS

- For Single-Model, Single-Algorithm problems, a software package and the user supplied mathematical model and property data are sufficient for achieving the solution.
- For Multiple-Model and/or Multiple-Algorithm problems, the number of possible combinations is so large that it is impossible to provide pre-tailored solution algorithms and programming is essential.
- For the later a combinations of software packages (such as POLYMATH and MATLAB) provides the most efficient means for solution.