

Enhancing Undergraduate Understanding of Transport Phenomena via Application of CFD

Jennifer Sinclair Curtis
University of Florida

AIChE Annual Meeting November 6, 2007

CFD

- "Computational Fluid Dynamics"
 - Numerical solution of differential momentum balance and continuity equation (typically finite-volume technique)
 - Sometimes accompanied by the solution of turbulent transport equations, differential energy balance, and/or species continuity equations
 - Non-Newtonian flows, multiphase flows may need to supply additional constitutive models or closure relations

Increase in Application of CFD

- Due to advances in computer memory and speed, CFD is now a common tool in industry
 - Aerospace
 - Automotive
 - Biomedical
 - Chemical Processing
 - Single and multi-phase flow
 - Heat and mass transfer
 - Chemical reaction
 - Energy
- In industry, often used for design or a flow diagnostic tool
 - More cost effective testing than experimental testing
 - Useful when measurements are difficult
 - Easy to explore different designs and operating conditions
 - Scale-up

CFD in Education

- In academic setting, CFD often used as a research tool and sometimes in graduate education
- Huge potential to use CFD as to enhance undergraduate transport education
 - CFD has many potential applications in a typical fluid flow or transport course
 - CFD can be easily incorporated into a typical fluid flow or transport course

- CFD is still largely underutilized in the undergraduate curriculum
 - time constraints in the curriculum
 - fitting it into the syllabus
 - time to train the students
 - lack of knowledge of CFD tools available
 - lack of knowledge of the possible uses of CFD for enhancing teaching
 - training of faculty an issue, need a "champion" in the department

- Enhance understanding of concepts through visualization
 - Students can see developing profiles, boundary layer development, regions of recirculation
 - Graphics bring life to the lecture or homework assignment
 - Computer laboratory explore the effects of changes in fluid properties, system geometry, and operating conditions
- Increases student interest in transport

- Investigate fluid flow problems beyond those involving one-dimensional, steady state, fully developed flow (ones that can be solved analytically)
 - Without knowledge of CFD, students can easily get the impression that if the flow situation is complex, empiricism is needed to analyze the process

- Introduction to the numerical solution of the continuity equation and momentum balance
 - Finite-Volume Technique, Grid, Iteration, Residuals, etc.
- Learn a bit about turbulence modeling
 - Move beyond Prandtl mixing length
 - Strengths and weaknesses of turbulence modeling
- Students become familiar with a tool for design/scale-up/optimization of flow processes

- Compare CFD results to:
 - Analytical solutions discussed in class
 - Results from empirical correlations
 - Their own laboratory data or published data
- Evaluate turbulence models, closure relations, grid density, etc.

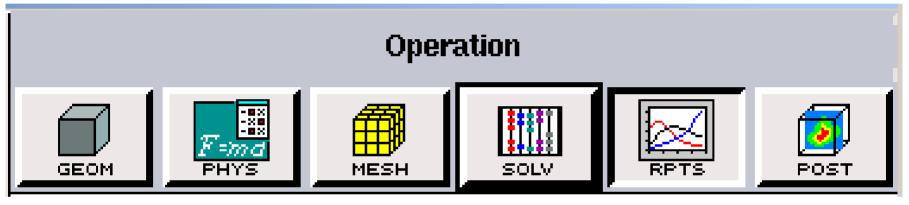
CFD Codes

- In CFD, modeling equations are discretized into algebraic equations using numerical methods (finite volume technique). The system of algebraic equations is solved in an iterative fashion.
- Numerical solution includes:
 - 1. Grid generation
 - 2. Discretization method
 - 3. Solvers
 - 4. Post-processing

CFD Codes for Education

- Training on use of code
 - At least several lecture periods
- Time to set-up problem students are very involved in problem set-up and numerical solution strategy
 - Generation of grid
 - For complex geometries need to import the database of the geometry into CFD software
 - Advantage flexibility
 - Physical model inlet and boundary conditions, closures needed, etc.
 - Decisions concerning time step, simulation domain size, etc. related to solver
- Time to reach a converged solution

CFD Code - FlowLab


- "Standard geometries" in FlowLab
 - Flexibility in...
 - Geometry size, relative dimensions
 - Fluid properties
 - Fluid velocity
- Physical model some options
- Discretization method/solver mostly hidden from user
- Wide range of post-processing options and graphics

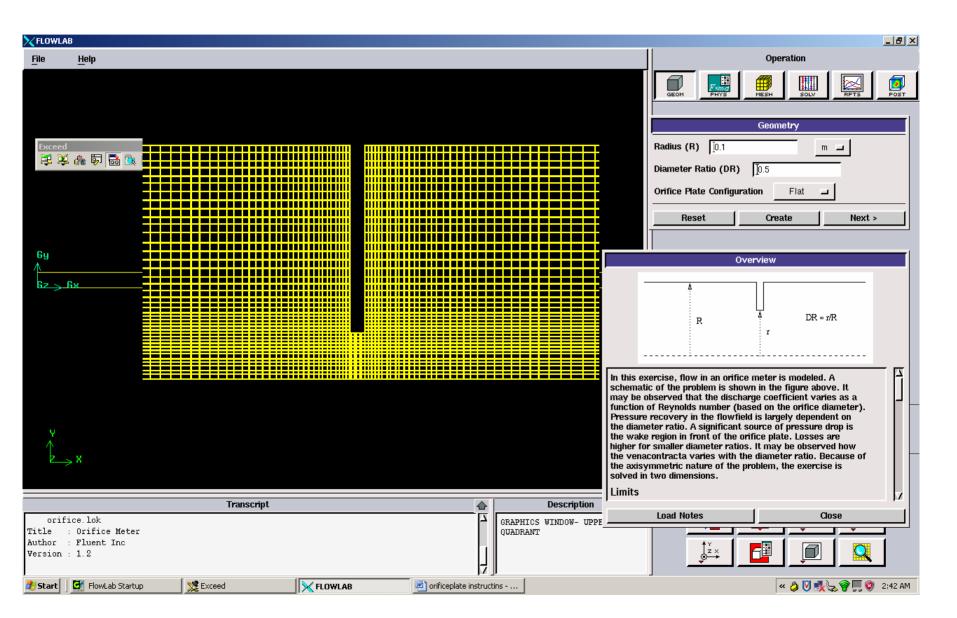
CFD Code - FLOWLAB

- Very user-friendly
- Minimal start-up time
 - Class time
 - Training for students
 - Training for faculty

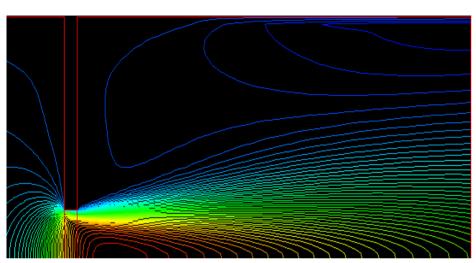
CFD Process

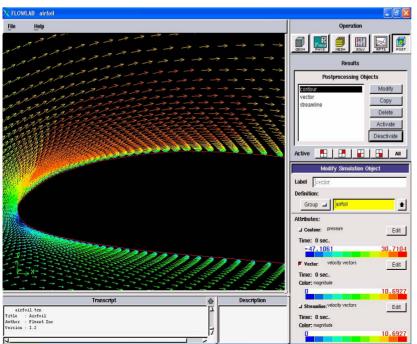
Geometry

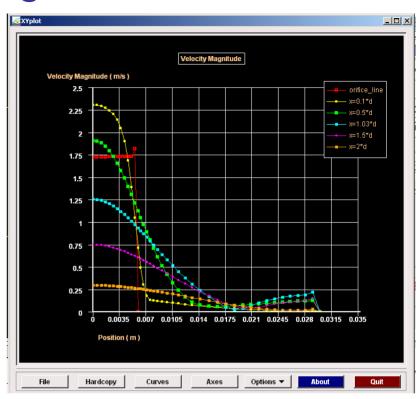
Physics


Mesh

Solve


Reports


Post Processing


Interface

Examples of Post-Processing

- Contours
- Velocity Vectors
- Streamlines
- Export Data

CFD in an Undergraduate Transport Course

- One CFD lecture
 - Introduction to discretization of governing equations
 - CFD terminology
 - Residuals
 - Consistency How accurately does numerical solution reflect solution to differential equation? Grid size, time step, accuracy of numerical method
 - Convergence Are residuals decreasing with increasing number of iterations?
 - Convergence Limit Residuals for all variables must be below this value
 - Discrepancies between CFD results, analytical results and empirical results
- CFD in-class demonstrations/visualizations
- Distribute CFD manuals for pipe flow and flow through an orifice
- CFD homework exercise each week which complement traditional lecture material - compare CFD solutions with theory, data, empirical correlations

FlowLab Templates

Laminar and Turbulent Flow Internal and External Flow With and Without Heat Transfer

- Flow through an Orifice
- Developing Flow in a Pipe
- Sudden Expansion in a Pipe
- Flow over a Heated Plate
- Flow over a Cylinder
- Conduction
 - Steady and Unsteady
 - Series and Parallel
- Airfoil

CFD Exercises

- Flow in Conduits
 - Laminar and Turbulent Flow
 - Development of the Velocity Profile
 - Development Length
 - Pressure Gradient
 - Vary Pipe Diameter, Fluid Viscosity, Inlet Velocity

CFD Exercises

- Flow in Conduits with Heat Transfer
 - Wall flux or wall temperature conditions
 - Vary Pr
 - Thermal entrance length
 - Developing Nu number

CFD Exercises

- Flow past immersed objects
 - Drag
 - Stagnation zones, wakes

- Flow in Sudden Expansions and Contractions
 - Pressure Drop, Loss Coefficients, Regions of Recirculation

Learning Outcomes

- Students knowledge of fundamental concepts in fluid mechanics is enhanced via CFD
- Students gain a basic understanding of the principles of CFD
- Students can analyze comparisons between CFD solutions and results of analytical solutions or empirical data
- Students gain an understanding of what problemsolving tools are available to address complex, real-world problems