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Abstract 
 

We study four non-Newtonian fluid mechanics problems using Mathematica®. Constitutive 

equations describing the behavior of power-law, Bingham and Carreau models are recalled. 

The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and 

annuli. For the vertical laminar film flow of a Bingham fluid we determine the velocity 

profile. Both problems involve the use of the shooting techniques because they have split 

boundary conditions. Since Mathematica® permits symbolic computations, we determine 

analytical expressions of volumetric flow rates for pipe flow of the Bingham and power-law 

fluids. We use the built-in optimization command of Mathematica®, FindMinimum, in order 

to find the non-Newtonian fluid model from representative data of flow rates measured under 

different applied pressure gradients in a horizontal pipe. These pedagogic problems are used 

to introduce the field of non-Newtonian fluid mechanics to students at the National Institute 

of Applied Sciences in Tunis. The Mathematica® notebooks are available from the 

corresponding author upon request or at Wolfram Research1. 
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A non-Newtonian fluid has a viscosity that changes with the applied shear force. These 

fluids are characterized by measuring or computing several rheological properties such as the 

viscosity and the first and second normal stresses. Rheometers are used, under oscillatory 

shear flow or extensional flow, to obtain experimental values of these rheological properties 

while kinetic theory calculations using dumbbells allow the prediction of these rheological 

properties. For a Newtonian fluid (such as water), the viscosity is independent of how fast you 

are stirring it, but for a non-Newtonian fluid it is dependent. It gets easier or harder to stir 

faster for different types of non-Newtonian fluids. By adding corn starch to water, one obtains 

a non-Newtonian fluid. Applying agitation with a spoon makes the fluid behave like a solid. 

Thus, the shear-thickening property of this non-Newtonian fluid becomes apparent. When 

agitation is stopped and the fluid is allowed to rest for a certain period of time, it recovers its 

liquid-like behavior.  

Many peculiar phenomena are observed with non-Newtonian fluids and constitute “fun” 

experiments that students can perform in the laboratory. They include dye swelling and rod 

climbing as well as the behavior of suspensions of particles moving in non-Newtonian versus 

Newtonian fluids. Students can determine the terminal fall velocity and rotation direction of a 

single settling particle as well as wall effects and interaction between particles. Problems 

involving non-Newtonian fluid flow are ubiquitous in modern industry, such as in polymer 

processing plants. The study of body fluids such as blood, which are non-Newtonian, has 

important applications in biomedical engineering.  In the present paper, we show how one can 

use the mathematical software, Mathematica®, to solve some simple non-Newtonian fluid 

problems. The most relevant Mathematica® commands are inserted in the text and can be 

found in the any introductory book such as Mathematica® , A System for doing Mathematics 

by Computer by Stephen Wolfram2. We start by reminding the reader of the few simple 

constitutive equations for the power-law, Carreau and Bingham fluids. Then, we give the 

velocity profile for the horizontal flow of power-law and Carreau fluids in a pipe and an 

annulus. The velocity profile for the fall of a Bingham liquid film is obtained in the next 

section. We also derive volumetric flow rate expressions for pipe flow of Bingham and 

power-law fluids. In the last part of the paper, we make a model determination using the 

previously found volumetric flow rate expressions and representative data. 
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I- Constitutive equations for non-Newtonian fluids 

For Newtonian fluids, the shear stress,τ , is proportional to the strain rate, 
.
γ  

.
γητ =       (1) 

where the viscosity, η , the proportionality factor, is constant. The situation is different for 

non-Newtonian fluids and the viscosity is a function of the strain rate: 
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Different constitutive equations, giving rise to various models of non-Newtonian fluids, have 

been proposed in order to express the viscosity as a function of the strain rate. 

In power-law fluids, the following relation is satisfied: 
1−

=
n.

γκη       (3) 

Dilatant fluids correspond to the case where the exponent in equation (3) is positive ( 1>n ) 

while pseudo-plastic fluids are obtained when 1<n . We see that viscosity decreases with 

strain rate for 1<n , which is the case for pseudo-plastic fluids, also called shear-thinning 

fluids. On the other hand, dilatant fluids are shear-thickening. If 1=n , one recovers the 

Newtonian fluid behavior. 

The Carreau model describes fluids for which the viscosity presents a plateau at low and high 

shear rates separated by a shear-thinning region: 
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where 0η  is the zero-shear viscosity and ∞η  is the infinite-shear viscosity. 

Finally, the Bingham model is defined as follows: 

At low shear rates:  ( ) 0,:
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II. Horizontal Flow of Carreau and Power-Law Fluids in a Pipe 
 

Problem statement. Find the velocity profiles for the laminar flow of power-law and Carreau 

fluids in a pipe, shown in Fig. 1. Use the following values for the pressure difference ∆p, the 

exponent n, the Newtonian fluid viscosity η , the consistency index κ, the infinite-shear 

viscosity ∞η , the zero-shear viscosity 0η , the relaxation parameter λ , the pipe length L and 

radius R, whose units appear under “Nomenclature” at the end of this article: 

0.02=50=100=∆ RLP and;  

Newtonian fluid: 410x9.8 −=η . 

Dilatant fluid: 610and39.3 −== κn . 

Pseudo-plastic fluid: 310x5and4.0 −== κn . 

Carreau fluid: 0and10x72.1,2.0,5.0 3
0 ==== ∞

− ηηλn . 

Solution. This problem is treated using Polymath©, a numerical computational package3, in 

the Problem Solving in Chemical Engineering with Numerical Methods by Cutlip and 

Shacham4. The governing equation is the z-component of the equation of motion in 

cylindrical coordinates: 
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Equation (7) is subject to the following split boundary conditions: 

0:0At == rzr τ      (8) 

0:At == zvRr      (9) 

These kinds of mathematical problems often require the utilization of a particular numerical 

approach called the shooting technique. This method consists of guessing different values of 

zv  at 0=r , solving the differential equation and checking that the no-slip boundary condition 

at Rr =  is satisfied. An analytical solution is possible for power-law fluids and details about 

its derivation can be found in Fluid Mechanics for Chemical Engineers by Wilkes5: 
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For the Carreau fluid, one must use a numerical approach since no analytical solution is 

available.  

For the power-law fluids, the following Mathematica® commands are used to find the 

velocity: 

 
system@Ω_D = 8D@rτrz@rD, 8r, 1<D m ∆PêLr,

D@vz@rD, 8r, 1<D m If@τrz@rD ≥ 0, −Hτrz@rDê κL^H1ênL,
H−τrz@rDêκL^H1ênLD, τrz@10^−5D m 0, vz@10^−5D m Ω<;

myODEsoln@Ω_D:= NDSolve@system@ΩD, 8vz, τrz<, 8r, 10^−5, R<D
yend@Ω_?NumericQD := Flatten@Hvz@rD ê. myODEsoln@ΩDL ê. r→ RD
bc= FindRoot@yend@ΩDm 0, 8Ω, 0, 0.5<D@@1, 2DD;  

 
The graphical capability of Mathematica® allows the student to plot the velocity profile 

without having to use different software. Figure 2 shows the velocity profile for the 

Newtonian, dilatant, Carreau and pseudo-plastic cases using the commands: 

 
sol1= myODEsoln@bcD
plt1= Plot@vz@rD ê.sol1, 8r, 0.00001, R<, PlotStyle→ RGBColor@0, 0, 1DD  

 

These profiles are obtained under the equal volumetric flow conditions. The velocity near the 

wall is higher for the Carreau and pseudo-plastic fluids than for the Newtonian and dilatant 

fluids. This results in higher heat transfer rates due a higher convection. The author's opinion 

is that the approach to solve split boundary problems using Mathematica® is more systematic 

than the one proposed by Cutlip and Shacham4 using Polymath© despite a steeper initial 

learning curve for the students. In fact, it automatically finds the velocity at the center of the 

pipe by verifying the no-slip boundary condition and using the Mathematica® command 

FindRoot.  

 

II. Horizontal Flow of a Carreau and a Power-Law Fluid in an annulus 
 
Problem statement. Find the velocity profiles for the laminar flow of a power-law and 

Carreau fluids in an annulus, shown in Fig. 3. Use the following values, where 21 and RR  are 

the inner and outer radii, and all other symbols have already been defined: 

5and;; 21 0.0=0.02=50=100=∆ RRLP  

Newtonian fluid: 410x9.8 −=η . 

Dilatant fluid: 410x7.4and2.1 −== κn . 
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Pseudo-plastic fluid: 310x5.4and5.0 −== κn . 

Carreau fluid: 0and10x04.2,2.0,5.0 3
0 ==== ∞

− ηηλn . 

Solution. Cutlip and Shacham4 have solved this example using Polymath©. The governing 

equation is again the z-component of the equation of motion in cylindrical coordinates: 
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Equation (11) is subject to the following split boundary conditions: 

0:At 1 == zvRr      (12) 

0:At 2 == zvRr      (13) 

To solve this problem, we make use of the shooting technique in a similar fashion as the 

previous example. This method consists of guessing different values of  rzτ  at 1Rr = , solving 

the differential equation and checking that the no-slip boundary condition at 2Rr =  is 

satisfied. An analytical solution4 is available for the Newtonian fluid case: 
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No analytical solution is available for dilatant, pseudo-plastic and Carreau fluids and one must 

resort to a numerical method.  

For the power-law fluids, the following Mathematica® command is used to find the velocity 

as a function of r : 

 
system@Ω_D = 8D@rτrz@rD, 8r, 1<D m ∆PêLr,

D@vx@rD, 8r, 1<D m If@τrz@rD ≥ 0, −Hτrz@rDê κL^H1ênL, H−τrz@rDêκL^H1ênLD,
τrz@R1D m Ω, vz@R1Dm 0<;

myODEsoln@Ω_D:= NDSolve@system@ΩD, 8vz, τrz<, 8r, R1, R2<D
yend@Ω_?NumericQD := Flatten@Hvz@rD ê. myODEsoln@ΩDL ê. r→ R2D
bc= FindRoot@yend@ΩDm 0, 8Ω, −2, 2<D@@1, 2DD;  

 
 
 

One can plot the velocity profile, shown in Figure 4, for the Newtonian, dilatant, Carreau and 

pseudo-plastic cases using the Mathematica® commands: 
 

sol1= myODEsoln@bcD
plt1= Plot@vx@rD ê.sol1, 8r, 0.00001, R<, PlotStyle→ RGBColor@0, 0, 1DD  
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These profiles are obtained under equal volumetric flow conditions. The velocity profiles 

found, for all four fluids, are not symmetric. In fact, they reach a maximum value close to the 

radial position given by 033.0=r , slightly less than half-way from 21 and RR .  

 

IV- Vertical laminar flow of a Bingham liquid film 
 

Problem statement. Find the velocity profile for the vertical laminar flow of a Bingham fluid 

down the wall depicted in Figure 5. Values of the gravitational acceleration, g , the density, 

ρ , the yield stress, 0τ , the zero-shear viscosity, 0η , the film thickness, δ , are given by: 

0.005 0.15  5;   950; 9.81;  g 0 ===== δητρ and0  
 
Solution. Cutlip and Shacham4 have presented a solution of this example using Polymath©. 

The governing equation is the z-component of the equation of motion in rectangular 

coordinates: 

g
dx

d xz ρ
τ

=       (15) 

Equation (15) is subject to the following split boundary conditions: 

0:0At == xzx τ      (16) 

0:At == zvx δ      (17) 

We make the same treatment as the first two problems by applying the shooting technique:  
 

system@Ω_D = 8D@τxz@xD, 8x, 1<D m ρ g,
D@vz@xD, 8x, 1<D m If@Abs@τxz@xDD ≤ τ0, 0,

If@τxz@xD > τ0, Hτ0 − τxz@xDLê η0, −Hτ0 + τxz@xDLêη0DD, τxz@0D m 0, vz@0Dm Ω<;
myODEsoln@Ω_D:= NDSolve@system@ΩD, 8vz, τxz<, 8x, 0, δ<D
yend@Ω_?NumericQD := Flatten@Hvz@rD ê. myODEsoln@ΩDL ê. r→ δD
bc= FindRoot@yend@ΩDm 0, 8Ω, 0, 0.5<D@@1, 2DD;  

 
For the Newtonian case, an analytical expression for the velocity, zv , as a function of 

position, x , can be easily derived: 
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In Figure 6, we show the velocity profile for the Newtonian and the Bingham fluids. This plot 

is obtained by using the Mathematica® commands: 
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sol1= myODEsoln@bcD
plt1= Plot@vz@xD ê.sol1, 8x, 0, δ<, PlotStyle→ RGBColor@0, 0, 1DD  

 
 
A comparison of the velocity profile obtained using the analytical solution for the Newtonian 

fluid and the velocity profile corresponding to the Bingham fluid shows that the latter is flat 

near the surface of the liquid film. In fact, we have a non-zero velocity gradient only when 

0ττ >xz . This behavior is typical of Bingham fluids. 

 

VI- Expressions of volumetric flow rates 
 

Problem statement. Derive expressions of volumetric flow rates for pipe flow of Bingham 

and power-law fluids using symbolic computations with Mathematica®. 

Solution. 

1- Power-law fluid case 

 

First, we find the expression of the shear stress, rzτ , as a function of the radial position, r : 

 
sol3= DSolve@D@rτrz@rD, 8r, 1<D m −∆PêL r, τrz@rD, rD
τrz@rD = sol1@@1, 1, 2DD ê.C@1D → 0  

 

We get the following result: 

L
rP

rz 2
∆

−=τ       (19) 

Then, we determine the velocity distribution using the symbolic command, Dsolve, 

 
sol4= DSolve@D@vz@rD, 8r, 1<D m −H−τrz@rDê κL^H1ênL, vz@rD, rD

vz@rD = sol4@@1, 1, 2DD ê.C@1D →
2−1ên n RI ∆P R

κ L
M

1
n

1+ n  
 

Finally, the symbolic command, Integrate, is used, 
 

Q= Integrate@2Pirvz@rD, 8r, 0, R<D  
 

and we get the following expression for the volumetric flow rate, 
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2- Bingham fluid case 

 

Just like the treatment above, we start by finding the expression of the shear stress, rzτ , as a 

function of the radial position, r : 

 
sol1= DSolve@D@rτrz@rD, 8r, 1<D m −∆PêL r, τrz@rD, rD
τrz@rD = sol1@@1, 1, 2DD ê.C@1D → 0  

 

We get the following result: 

L
rP

rz 2
∆

−=τ       (19) 

In the first part of the derivation, we determine the velocity distribution between 

( ) PLr ∆= 02τ  and Rr =  using boundary condition ( ) 0=Rvz  and the symbolic command, 

Dsolve: 

 
sol2= DSolve@D@vz@rD, 8r, 1<D m Hτrz@rD + τ0Lêη, vz@rD, rD

vz@rD = sol2@@1, 1, 2DD ê.C@1D →
∆P R2

4η L
−

Rτ0

η  
 

The symbolic command, Integrate, is used to obtain the expression of the volumetric flow 

rate between ( ) PLr ∆= 02τ  and Rr = , 

 

Q1= Integrate@2Pirvz@rD, 8r, −2 τ0 Lê∆P, R<D  
In the second part of the derivation, we determine the constant velocity, 0v , between 0=r  

and ( ) PLr ∆= 02τ  using the following symbolic command: 

 
v0 = 1êµ PGHr^2− R^2L ê4+ τ0êµHr− RL ê. r→ 2 τ0 Lê ∆P  

 

This is nothing more than expressing the continuity of the velocity at ( ) PLr ∆= 02τ . In fact, 

we have written that ( )( )PLvv z ∆= 00 2τ  in the above Mathematica® statement. 
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The symbolic command, Integrate, is used to obtain the expression of the volumetric flow 

rate between 0=r  and ( ) PLr ∆= 02τ , 

 

Q2= Integrate@2Pirv0, 8r, 0, 2 τ0 Lê∆P<D  
 

and we get the following expression for the overall volumetric flow rate, 
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     (21) 

 

V- Non-Newtonian fluid model determination 
 
Problem statement.  Wilkes5 provides representative values of the volumetric flow rate 

versus the applied pressure gradient for horizontal flow in a pipe. These values are reproduced 

in Table 1. The pipe radius is equal to m0.01=R . Use these representative values, in 

conjunction with the analytical expression of the volumetric flow rates determined in the 

previous section, to compute the parameters of the constitutive equation.  

 

Solution. First, we compute the following sum: 

( )∑
=

−=
10

1

2

i

th
i

rep
i QQJ       (22) 

where th
i

rep
i QQ and  are the representative value and analytical expression of the volumetric 

flow rate. Then, we use the built-in command of Mathematica®, FindMinimum, to determine 

the values of κandn for the power-law model and ητ and0  for the Bingham model that 

minimize the objective function J . The approach use here is the least squares method. For the 

power-law model, we find 6.708k and0.437n ==  while for the Bingham model the result 

is 0.0326and0 == ητ 77.55 . The value of the sum given by equation (22) is -6109.89×  for 

the Bingham model and -7102.67 ×  for the power-law model.  Thus, we conclude that the 

power-law model fits the representative data better. 
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Conclusions 
 

We presented the solution of four non-Newtonian fluid mechanics problems using 

Mathematica®. The velocity profile is obtained for the horizontal flow of power-law fluids in 

pipes and annuli and for the vertical laminar flow of a Bingham fluid. These problems have 

split boundary conditions and we applied the shooting techniques to solve them. Analytical 

expressions of volumetric flow rates for pipe flow of the Bingham and power-law fluids were 

derived using Mathematica®. The parameters of the constitutive equation of non-Newtonian 

fluids were obtained from representative data of flow rates measured under different applied 

pressure gradients in a horizontal pipe. These problems are simple enough to constitute an 

excellent introduction to the field of non-Newtonian fluid mechanics. Students at the National 

Institute of Applied Sciences in Tunis perform well despite no previous knowledge of 

Mathematica®. 
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Nomenclature 
 

g : gravitational acceleration ( 2m/s ) 

Q : volumetric flow rate )/sm( 3  

L : pipe length ( m ) 

n : power-law exponent 

P∆ : pressure difference ( Pa ) 

R : pipe radius ( m ) 

21 , RR : annulus radiuses ( m ) 

r : radial position ( m ) 

zv : velocity ( m/s ) 

z : axial position ( m ) 

κ : power-law consistency index ( 2n /ms.N ) 

δ : film thickness ( m ) 

λ : relaxation parameter ( s ) 

η : viscosity ( 2s.kg/m ) 

0η : zero-shear viscosity ( 2s.kg/m ) 

∞η : infinite-shear viscosity ( 2s.kg/m ) 

ρ : density ( 3kg/m ) 

0τ : yield stress ( s.kg/m ) 

rzτ : shear stress ( s.kg/m ) 
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( )mPaLP /∆  ( )smQ /10 35 ×  
10000 5.37 
20000 26.4 
30000 68.9 
40000 129 
50000 235 
60000 336 
70000 487 
80000 713 
90000 912 
100000 1100 

 

Table 1 - Volumetric flow rate versus pressure gradient 

 

 

 

 

 

 

 

 

 

 

 

 

 


