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Abstract

We study four non-Newtonian fluid mechanics problems using Mathematica®. Constitutive
equations describing the behavior of power-law, Bingham and Carreau models are recalled.
The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and
annuli. For the vertical laminar film flow of a Bingham fluid we determine the velocity
profile. Both problems involve the use of the shooting techniques because they have split
boundary conditions. Since Mathematica® permits symbolic computations, we determine
analytical expressions of volumetric flow rates for pipe flow of the Bingham and power-law
fluids. We use the built-in optimization command of Mathematica®, FindMinimum, in order
to find the non-Newtonian fluid model from representative data of flow rates measured under
different applied pressure gradients in a horizontal pipe. These pedagogic problems are used
to introduce the field of non-Newtonian fluid mechanics to students at the National Institute
of Applied Sciences in Tunis. The Mathematica® notebooks are available from the

corresponding author upon request or at Wolfram Research'.
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A non-Newtonian fluid has a viscosity that changes with the applied shear force. These

fluids are characterized by measuring or computing several rheological properties such as the
viscosity and the first and second normal stresses. Rheometers are used, under oscillatory
shear flow or extensional flow, to obtain experimental values of these rheological properties
while kinetic theory calculations using dumbbells allow the prediction of these rheological
properties. For a Newtonian fluid (such as water), the viscosity is independent of how fast you
are stirring it, but for a non-Newtonian fluid it is dependent. It gets easier or harder to stir
faster for different types of non-Newtonian fluids. By adding corn starch to water, one obtains
a non-Newtonian fluid. Applying agitation with a spoon makes the fluid behave like a solid.
Thus, the shear-thickening property of this non-Newtonian fluid becomes apparent. When
agitation is stopped and the fluid is allowed to rest for a certain period of time, it recovers its
liquid-like behavior.

Many peculiar phenomena are observed with non-Newtonian fluids and constitute “fun”
experiments that students can perform in the laboratory. They include dye swelling and rod
climbing as well as the behavior of suspensions of particles moving in non-Newtonian versus
Newtonian fluids. Students can determine the terminal fall velocity and rotation direction of a
single settling particle as well as wall effects and interaction between particles. Problems
involving non-Newtonian fluid flow are ubiquitous in modern industry, such as in polymer
processing plants. The study of body fluids such as blood, which are non-Newtonian, has
important applications in biomedical engineering. In the present paper, we show how one can
use the mathematical software, Mathematica®, to solve some simple non-Newtonian fluid
problems. The most relevant Mathematica® commands are inserted in the text and can be
found in the any introductory book such as Mathematica® , A System for doing Mathematics
by Computer by Stephen Wolfram®>. We start by reminding the reader of the few simple
constitutive equations for the power-law, Carreau and Bingham fluids. Then, we give the
velocity profile for the horizontal flow of power-law and Carreau fluids in a pipe and an
annulus. The velocity profile for the fall of a Bingham liquid film is obtained in the next
section. We also derive volumetric flow rate expressions for pipe flow of Bingham and
power-law fluids. In the last part of the paper, we make a model determination using the

previously found volumetric flow rate expressions and representative data.



I- Constitutive equations for non-Newtonian fluids

For Newtonian fluids, the shear stress, 7, is proportional to the strain rate, 7/

r=ny (1)
where the viscosity, 77, the proportionality factor, is constant. The situation is different for

non-Newtonian fluids and the viscosity is a function of the strain rate:
7= 77(7j ¥ (2)
Different constitutive equations, giving rise to various models of non-Newtonian fluids, have

been proposed in order to express the viscosity as a function of the strain rate.

In power-law fluids, the following relation is satisfied:

n—1

n=xy 3)
Dilatant fluids correspond to the case where the exponent in equation (3) is positive (n >1)
while pseudo-plastic fluids are obtained when n <1. We see that viscosity decreases with
strain rate for n <1, which is the case for pseudo-plastic fluids, also called shear-thinning
fluids. On the other hand, dilatant fluids are shear-thickening. If n =1, one recovers the
Newtonian fluid behavior.
The Carreau model describes fluids for which the viscosity presents a plateau at low and high

shear rates separated by a shear-thinning region:

n-n, 1

= - 4)
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where 7, 1s the zero-shear viscosity and 7, is the infinite-shear viscosity.
Finally, the Bingham model is defined as follows:
At low shear rates: %(T 7)<, y=0 (5)
. 1 2 T() )
At high shear rates: E(T : z-) > Ty, T=\n+— |y (6)



Il. Horizontal Flow of Carreau and Power-Law Fluids in a Pipe

Problem statement. Find the velocity profiles for the laminar flow of power-law and Carreau
fluids in a pipe, shown in Fig. 1. Use the following values for the pressure difference Ap, the

exponent n, the Newtonian fluid viscosity 77, the consistency index x, the infinite-shear
viscosity 77, , the zero-shear viscosity 7,, the relaxation parameter A, the pipe length L and

radius R, whose units appear under “Nomenclature” at the end of this article:

AP =100; L=50 and R=0.02
Newtonian fluid: 7 =8.9 x107™*.
Dilatant fluid: #=3.39 and x =107°.
Pseudo-plastic fluid: 7 =0.4 and x =5 x107°.
Carreau fluid: n=0.5,2=0.2, 1, =1.72 x10” and 77, = 0.

Solution. This problem is treated using Polymath®, a numerical computational package’, in
the Problem Solving in Chemical Engineering with Numerical Methods by Cutlip and
Shacham®. The governing equation is the z-component of the equation of motion in

cylindrical coordinates:

vl ()] ap -
rdr dr L

Equation (7) is subject to the following split boundary conditions:
At r=0: 7. =0 (8)
At r=R: v. =0 9)

These kinds of mathematical problems often require the utilization of a particular numerical
approach called the shooting technique. This method consists of guessing different values of
v_ at r =0, solving the differential equation and checking that the no-slip boundary condition
at » = R is satisfied. An analytical solution is possible for power-law fluids and details about
its derivation can be found in Fluid Mechanics for Chemical Engineers by Wilkes’:

Un (plen _ 1+l/n
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For the Carreau fluid, one must use a numerical approach since no analytical solution is
available.
For the power-law fluids, the following Mathematica® commands are used to find the

velocity:

system[Q_] = {D[Fzz[F], {r, 1}] = aP/LT,
DIVzIrT, {r, 1}] = If[zz[r] 2 O, - (zrz[F]1 /)N (1/ 1),
(-Ttrz[r1 /)N (1/NM) 1, Tz [107-5] = O, Vz[10M-5] == q};
myODEsoln[Q ] := NDSolve[system[Q], {Vz, trz}, {I', 10™-5, R}]

yend[@_?NumericQ] := Flatten[ (v[r] /- myODEsoln[Q]) /- r- R]

bc = FindRoot[yend[Q] == O, {Q, 0, 0.5}1[[1, 211;
The graphical capability of Mathematica® allows the student to plot the velocity profile
without having to use different software. Figure 2 shows the velocity profile for the

Newtonian, dilatant, Carreau and pseudo-plastic cases using the commands:

soll = myODEsoln[bc)
pltl = Plot[v;[r] /.soll, {r, 0.00001, R}, PlotStyle- RGBColor|[O, 0, 1]]

These profiles are obtained under the equal volumetric flow conditions. The velocity near the
wall is higher for the Carreau and pseudo-plastic fluids than for the Newtonian and dilatant
fluids. This results in higher heat transfer rates due a higher convection. The author's opinion
is that the approach to solve split boundary problems using Mathematica® is more systematic
than the one proposed by Cutlip and Shacham® using Polymath® despite a steeper initial
learning curve for the students. In fact, it automatically finds the velocity at the center of the

pipe by verifying the no-slip boundary condition and using the Mathematica® command

FindRoot.

I1. Horizontal Flow of a Carreau and a Power-Law Fluid in an annulus

Problem statement. Find the velocity profiles for the laminar flow of a power-law and
Carreau fluids in an annulus, shown in Fig. 3. Use the following values, where R, and R, are
the inner and outer radii, and all other symbols have already been defined:
AP=100; L=50; R, =002 and R, =0.05
Newtonian fluid: 7 =8.9x107*.

Dilatant fluid: n =12 and x =4.7 x10™*.



Pseudo-plastic fluid: n = 0.5 and k¥ =4.5x10.
Carreau fluid: n=0.5,4=0.2, 1, =2.04x10” and 7, =0.

Solution. Cutlip and Shacham® have solved this example using Polymath®. The governing

equation is again the z-component of the equation of motion in cylindrical coordinates:

1dl, f-dv=| | AP (11)
rdr dr L

Equation (11) is subject to the following split boundary conditions:
At r=R,: v. =0 (12)
At r=R,: v. =0 (13)

To solve this problem, we make use of the shooting technique in a similar fashion as the
previous example. This method consists of guessing different values of 7_ at r = R,, solving
the differential equation and checking that the no-slip boundary condition at r =R, is
satisfied. An analytical solution® is available for the Newtonian fluid case:
2 p2

v.(r)= (%j [Rj —r? +%ln(r/&) (14)
No analytical solution is available for dilatant, pseudo-plastic and Carreau fluids and one must
resort to a numerical method.
For the power-law fluids, the following Mathematica® command is used to find the velocity

as a function of r:

system[Q_] = {D[r trz[F], {F, 1}]1 = AP/LT,
DIW[F], {r, 1}1 = If[cz[r] 2 O, - (zrz[F] /)N (L/ D), (-Trz[F] /)N (/)T
tz[R1] =Q, Vz[R1] = 0} ;

myODEsoIn[e_1 := NDSolve[system[Q], {Vz, trz}, {I, R1, R2}]

yend[Q ?NumericQ] := Flatten[ (v [r] /. myODEsoln[Q]) /- r- R2]

bc = FindRoot[yend[¢] == 0, {Q, -2, 2}1[[1, 2]];

One can plot the velocity profile, shown in Figure 4, for the Newtonian, dilatant, Carreau and

pseudo-plastic cases using the Mathematica® commands:

soll = myODEsoln[ bc)
pltl = Plot[w[r] /.soll, {r, 0.00001, R}, PlotStyle- RGBColor[O, 0O, 1]]



These profiles are obtained under equal volumetric flow conditions. The velocity profiles
found, for all four fluids, are not symmetric. In fact, they reach a maximum value close to the

radial position given by » = 0.033, slightly less than half-way from R, and R, .

IVV- Vertical laminar flow of a Bingham liquid film

Problem statement. Find the velocity profile for the vertical laminar flow of a Bingham fluid

down the wall depicted in Figure 5. Values of the gravitational acceleration, g, the density,
P, the yield stress, 7, the zero-shear viscosity, 7,, the film thickness, ¢ , are given by:

g=981; p=950; tr,=5 n,=0.15 and O =0.005

Solution. Cutlip and Shacham® have presented a solution of this example using Polymath®.

The governing equation is the z-component of the equation of motion in rectangular

coordinates:
dt
2 = 15
o P8 (15)
Equation (15) is subject to the following split boundary conditions:
At x=0: r.=0 (16)
At x=90: v. =0 (17)

We make the same treatment as the first two problems by applying the shooting technique:

system[q_] = {D[tz[X], {X, 1}] == 0Q,
DIVzIX], {X, 1}] = IF[ADS[T:z[X]] < 70, O,
If[tz[X] > 0, (T0- Tz[X]) / N0s = (T0+ Tz [X]) /10115 Txz[O] = O, Vz[0] = Q};
myODEsoln[a ] := NDSolve[system[Q], {Vz, txz}, {X, O, 6}]
yend[Q ?NumericQ] := Flatten[ (vz[r] /. myODEsoln[Q]) /. r- 8]
bc = FindRoot[yend[Q] == O, {Q, 0, 0.5}11[1, 211;

For the Newtonian case, an analytical expression for the velocity, v_, as a function of

zo

position, x, can be easily derived:

v, =p§—7752{1—(§j } (18)

In Figure 6, we show the velocity profile for the Newtonian and the Bingham fluids. This plot

is obtained by using the Mathematica® commands:



soll = myODEsoln[ bc)
pltl = Plot[v;[X] /.soll, {x, 0, &}, PlotStyle -» RGBColor|[0, 0, 1]]

A comparison of the velocity profile obtained using the analytical solution for the Newtonian
fluid and the velocity profile corresponding to the Bingham fluid shows that the latter is flat
near the surface of the liquid film. In fact, we have a non-zero velocity gradient only when

7., > 7,. This behavior is typical of Bingham fluids.

VI1- Expressions of volumetric flow rates

Problem statement. Derive expressions of volumetric flow rates for pipe flow of Bingham
and power-law fluids using symbolic computations with Mathematica®.

Solution.

1- Power-law fluid case

First, we find the expression of the shear stress, 7_, as a function of the radial position, 7:

rz 2

sol3 = DSolve[D[r tyz[r], {r, 1}] = -AP/L r, t=[r], I']
Tz[r] =soll[[1, 1,211 /-C[1] -0

We get the following result:

APr
" 2L (19)

Then, we determine the velocity distribution using the symbolic command, Dsolve,

sol4 = DSolve[D[Vz[r], {I, 1}] = - (-trz[F]1 / x) N1/ N), Vz[I], I]
2-nnR (ﬂ)%
xL

1+n

Vz[r] =sol4[11, 1, 211 /-C[1] »

Finally, the symbolic command, Integrate, is used,

Q= Integrate[2Pi rv,[r], {r, 0, R}]

and we get the following expression for the volumetric flow rate,



I/n
2717 R n(RAP]

1+3n

0= (20)

2- Bingham fluid case

Just like the treatment above, we start by finding the expression of the shear stress, 7._, as a

function of the radial position, 7:

soll = DSolve[D[r tyz[r], {I, 1}]1 = -AP/L r, ©z[F], I]
tz[r] =soll[[1, 1, 211 /.C[1]1 -0

We get the following result:

APr
T =- 19
. 5L (19)

In the first part of the derivation, we determine the velocity distribution between

r=(27,L)/AP and r = R using boundary condition v_(R)=0 and the symbolic command,

Dsolve:

sol2 = DSolve[D[V,[r]1, {r, 1}] = (Trz[F] +T0) /7115 V2[F], I]
AP R2 _Reo
4nL n

V[r] =sol2[[1, 1, 211 /-C[1] »

The symbolic command, Integrate, is used to obtain the expression of the volumetric flow

rate between r = (2z,L)/AP and r = R,

Ql = Integrate [2Pi r\;[r], {r, -2to L/ 4P, R}]
In the second part of the derivation, we determine the constant velocity, v,, between » =0

and r = (27,L)/AP using the following symbolic command:

Vo=1/uPG(r"2-R™"2) /4+tg/u(r-Ry /.r->2ztglL/ AP

This is nothing more than expressing the continuity of the velocity at » = (ZTOL)/ AP . In fact,

we have written that v, = v_((27,L)/AP) in the above Mathematica® statement.



The symbolic command, /ntegrate, is used to obtain the expression of the volumetric flow

rate between 7 =0 and r = (27,L)/AP,

Q2 = Integrate [2Pi rvg, {r, 0, 2zgL/aP}]

and we get the following expression for the overall volumetric flow rate,
B TR*AP 7 R’7, N 2ty I

Q 8n L 3n 3nAP’

21)

V- Non-Newtonian fluid model determination

Problem statement. Wilkes® provides representative values of the volumetric flow rate
versus the applied pressure gradient for horizontal flow in a pipe. These values are reproduced

in Table 1. The pipe radius is equal to R=0.01lm. Use these representative values, in

conjunction with the analytical expression of the volumetric flow rates determined in the

previous section, to compute the parameters of the constitutive equation.

Solution. First, we compute the following sum:
10
7=l -o"f (22)
i=1

where Q' and Q" are the representative value and analytical expression of the volumetric

flow rate. Then, we use the built-in command of Mathematica®, FindMinimum, to determine

the values of 7n and x for the power-law model and 7, and 77 for the Bingham model that

minimize the objective function J . The approach use here is the least squares method. For the

power-law model, we find n =0.437 and k = 6.708 while for the Bingham model the result
is 7, =77.55 and 7 = 0.0326 . The value of the sum given by equation (22) is 9.89x10° for

the Bingham model and 2.67x10” for the power-law model. Thus, we conclude that the

power-law model fits the representative data better.

10



Conclusions

We presented the solution of four non-Newtonian fluid mechanics problems using
Mathematica®. The velocity profile is obtained for the horizontal flow of power-law fluids in
pipes and annuli and for the vertical laminar flow of a Bingham fluid. These problems have
split boundary conditions and we applied the shooting techniques to solve them. Analytical
expressions of volumetric flow rates for pipe flow of the Bingham and power-law fluids were
derived using Mathematica®. The parameters of the constitutive equation of non-Newtonian
fluids were obtained from representative data of flow rates measured under different applied
pressure gradients in a horizontal pipe. These problems are simple enough to constitute an
excellent introduction to the field of non-Newtonian fluid mechanics. Students at the National
Institute of Applied Sciences in Tunis perform well despite no previous knowledge of

Mathematica®.
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Nomenclature

g : gravitational acceleration (m/s*)

O: volumetric flow rate (m’/s)

L : pipe length (m)

n : power-law exponent

AP : pressure difference (Pa)

R : pipe radius (m)

R, , R, : annulus radiuses (m)

r : radial position (m)

v_: velocity (m/s)

z : axial position (m)

: power-law consistency index (N.s"/m?)

: film thickness (m)

S O A

: relaxation parameter (s )

n: viscosity (kg/m.s?)

1, : zero-shear viscosity (kg/m.s*)

1, : infinite-shear viscosity (kg/m.s?)
p : density (kg/m?)

7, yield stress (kg/m.s)

7 : shear stress (kg/m.s)
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Figure 1 - Flow of Carreau and power-law fluids
in a pipe
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Figure 2 - Velocity profiles of dilatant, psendo-plastic,
Carrean and Newtonian fluids in a pipe
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Figure 3 - Flow of Carrean and power-law
fluids in an annlus
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Figure 4 - Velocity profiles of dilatant, pseudo-plastic,
Carreau and Mewtonian fluids in an anmalus

16



LT i
il i

Vi{x) g

F
¥

Figure 5 - Vertical flow of a Bingham
fluid i a liguid film

17



0.6

0.4

0.z

u] 0.001 0,00z 0,003z 0. 00 0. 00%
X

Figure 6 - Velocity profiles of Bingharm and
Mewtordan fluids in liguid film

18



AP/L (Pa/m) 10° xQ (m3 /s)
10000 5.37
20000 26.4
30000 68.9
40000 129
50000 235
60000 336
70000 487
80000 713
90000 912
100000 1100

Table 1 - Volumetric flow rate versus pressure gradient
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