Molecular Simulation Module Development Project Update

David A. Kofke

Department of Chemical and Biological Engineering University at Buffalo, The State University of New York

(George Bodner, Purdue University)

Molecular Simulation as a Teaching Tool

- Molecular simulation provides a virtual laboratory for molecular mechanics
 - Physically accurate (for the choice of molecular model)
- Many interesting, nontrivial behaviors can be demonstrated
 - Open ended
 - No simple underlying model that directly programs behavior
- The molecular picture is completely accessible
 - Possible to observe how a macroscopic outcome results from collective molecular actions
- Quantitative measurements can be taken
 - Molecular behaviors analyzed with tools of thermodynamics and continuum mechanics

Obstacles 1.

- Educational activities must focus on the *use* of simulation, not its development
 - Don't bog students down in complex coding tasks
- Simulations should be interactive and graphically-oriented
 - Manipulate in real time, like an experiment
- Results should be readily accessible and amenable to postsimulation analysis
 - Like an experiment
- Simulations need to be presented as a complete, fully-functional integrated package

Obstacles 2.

- Broad range of application areas
 - Chemical thermodynamics
 - Boiling, freezing, miscibility, self-assembly, osmosis, etc.
 - Transport phenomena
 - Heat transfer, diffusion, sound, viscosity,...
 - Kinetics
 - Chemical reactions, polymerization, nucleation,...
 - Materials science
 - Elasticity, strength, electronics, photonics,...
 - Biology
 - Protein folding, ion channels,...
- No single person can develop simulations to encompass all the potentially relevant phenomena

Obstacles 3.

- Graphical programming is a tedious skill that few researchers otherwise need
 - Most content experts cannot develop graphical tools
- Educationally effective graphically-oriented simulations are difficult to develop
 - Pedagogical skill varies among practitioners
 - Interest and/or skill to do assessment is not widespread
- In summary
 - A broad range of people are needed to cover the breadth of application
 - The skills needed to develop effective modules are not found among this same group
- Also are obstacles that confront research applications
 - Accessible length and time scales
 - Long CPU time needed to gather some types of results
 - Accuracy of molecular model

Module Development Project

- A community effort to develop molecular simulation teaching modules
- Solicit short proposals for module designs from the science/engineering community at large
- Select several from this pool
- Develop modules
 - We produce graphical-oriented molecular simulation
 - Module consultant produces background documentation
- Assess effectiveness of the modules
 - Involve multiple groups
- Supported by NSF CCLI grant

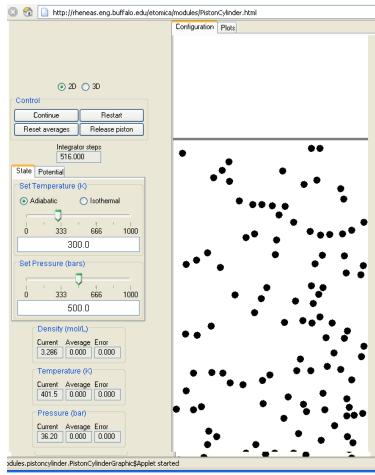
Definition of "Module"

- Interactive, graphically oriented molecular simulation
- Supporting material to help instructor and student to use module
 - *Introduction*, describing physical ideas
 - Background, containing technical information
 - Examples, with step-by-step instructions on use of simulation
 - *Problems*, relevant to module for assignment by instructor
 - Instructor Material, describing particular points or caveats
 - Assessment Material, to be completed by student and/or instructor for use in formative and summative evaluations
 - Simulation Instructions, giving details on how to set up and run simulation in various ways, with source code to permit modification

Module Consultant Responsibilities

- Generate general idea for the module (via a proposal)
- Specify all aspects of the simulation (in consultation with simulation developers, as needed)
 - Choice of molecular models
 - Model parameters
 - Simulation algorithm
 - Accessible ranges of user-adjustable parameters
 - Values of other parameters
 - General layout of graphical interface
 - Identification of data to be recorded to file
- Preparation of all supporting materials (excluding general assessment material, and simulation instructions)
- Preparation of assessment material specific to the module (in consultations with pedagogy expert, if needed)
- Use and assess simulation module in a course setting, and report results
- Compensated up to \$5000 for their efforts

Progress Report


- Modules used as focus in two workshops at ASEE Chemical Engineering Summer School
- One "initial module" under development
 - J. Autschbach, UB Dept of Chemistry
 - Expt measurement of virial coefficient of CO₂
 - VLE simulation of phase coexistence of model fit to data
- Two modules selected from first solicitation
 - Osmosis
 - Mechanical properties at a gold interface
- Pilot module used and assessed in classroom

Pilot Study

- Chemical engineering thermodynamics course
 - Spring 2005, 2006
 - Sophomore level, about 45 students
 - Prof. Mark Swihart, instructor
- Piston-cylinder simulation
 - Classical thermo from classical (statistical) mechanics
- Problem given in memo form
 - Assess suitability of molecular simulation for evaluating virial coefficients
 - Virial coefficients determined by regressing simulation PVT data
 - Results compared to data for real substances
 - substances

 Compared to ability to do same using off-the-shelf thermo correlations
- Results submitted in form of report

Likert-scale Responses

- students were strongly positive in responses to questions that dealt with the ease of operation of the simulation
- neutral in their responses to questions that probed whether the simulations enhanced their understanding of material
 - Qualitative interviews needed to clarify some inconsistencies
- strongly negative toward both the amount of time the simulation took
- strongly positive toward the general idea of simulations being a "good way to learn"
- strong agreement the simulation was well-designed and agreement that the simulation was a valuable experience

Open-ended Responses

- How many simulations would be appropriate for a course?
 - -1 (n=25) or 2 (n=9)
 - Complaint about time required for simulation
- What are the benefits of computer simulations?
 - Help to visualize molecules as well as perform experiments hard to duplicate in laboratory
 - It enables us students to focus on the concept behind the experiment
- What are the disadvantages of simulations?
 - Time required to complete simulation
 - Possible mistakes
 - Crashes
- Work by yourself, pairs, teams?
 - Group effort would make project more convenient to complete

Open-ended Responses

- Time spent on project and report?
 - Confused responses, but most (n=25) report more than five hours
- Did simulations provide insight into past learning?
 - Positive (n=12) fewer than negative (n=21)
- What should be changed?
 - Shorter simulations
 - More insight regarding expected values
- Other recommendations?
 - Faster simulation
 - Miscellaneous user interface suggestions

Summary

- Ideas for modules are being solicited from the community
- Modules comprise
 - Graphically-oriented molecular simulation developed by us
 - Supporting materials prepared by proposer of module
- Second solicitation underway
 - Current proposal period ends December 15
 - www.etomica.org

Acknowledgments

- National Science Foundation
- CACHE / Molecular Modeling Task Force
- Collaborators
 - George Bodner (Purdue)
 - Andrew Schultz (University at Buffalo)
 - Ken Benjamin (University at Buffalo)
 - Mark Swihart (University at Buffalo)
- Etomica web site
 - www.etomica.org

