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Impact of my publications with Ignacio

• My contribution to Ignacio’s h-index (64)

– Zero!

• Maybe we have just a few joint papers?
– False! I am #3 in co-authors list

• How about Ignacio’s impact on my papers?

– My top 3 papers? Before I met him!
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Solid paper!



My research work with Ignacio

• First met him in 2004
– ESCAPE-14, 16-19 May, Portugal

• Visiting researcher to CMU
– Sep 2004 - Jul 2005

• Scheduling of single & multistage batch plants

– Continuous-time, Multiple time grids, Constraint Programming, Hybrid MILP/CP

– Ago-Dec 2008
• Scheduling of batch & continuous plants

– Time-dependent electricity costs, Decomposition methods, Dinkelbach algorithm

– Oct-Nov 2011
• Multiparametric Disaggregation Technique (lower bound)

• Development of continuous-time models from GDP

– Oct-Nov 2013
• Global optimal scheduling of crude oil blending operations

– Planning & Scheduling I, Thursday, 1:33 PM, Hilton 406-407 
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Heuristics for efficient MILP models

• Amongst valid choices pick exactly one (exclusive OR)
–  𝑖,𝑖≠𝑗 𝑦𝑖,𝑗 = 1 ∀𝑗  𝑗,𝑖≠𝑗 𝑦𝑖,𝑗 = 1 ∀𝑖

• Traveling salesman problem (one arrival & departure from each city)

• Although they look similar
– Capacity constraints are good
• 𝑥𝑖 ≤ 𝑀𝑦𝑖 ∀𝑖

– Big-M constraints are bad
• 𝑥𝑖 − 𝑥𝑖´ ≤ 𝑀 1 − 𝑦𝑖 ∀𝑖, 𝑖

′ > 𝑖

• Adding summations makes things tighter

– 𝑇𝑡+1 − 𝑇𝑡 ≥
 𝜉𝑖,𝑡,𝑡+1

𝜌𝑖
𝑚𝑎𝑥 ∀𝑖, 𝑡 𝑇𝑡+1 − 𝑇𝑡 ≥  𝑖

 𝜇𝑟,𝑖 𝜉𝑖,𝑡,𝑡+1

𝜌𝑖
𝑚𝑎𝑥 ∀𝑟, 𝑡

• Timing constraints by equipment unit 𝑟
rather than task 𝑖 (Castro et al. 2004)

– Excess resource balances (Pantelides, 1994)
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RMIP Solution CPUs

Before 7273
2601

52.2

After 2689 15.6

Before 7361
2638

200,652

After 2695 1913





Disjunctive Programming (Balas, 1979)

• Most natural & straightforward way of stating problems 
involving logical conditions

• Any mixed-integer program can be stated as a DP, usually 
in more than one way

• Various formulations may give rise to linear relaxations of 
varying strengths
– Affects computational performance

• No 0-1 variables explicitly included in the model
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min𝑓(𝑥)

𝑠. 𝑡. 𝑔 𝑥 ≤ 0

 

𝑖∈𝐷𝑘

𝐴𝑖,𝑘𝑥 ≤ 𝑏𝑖,𝑘 ∀𝑘 ∈ 𝐾

𝑥 ∈ ℝ𝑛, 𝑥 ≥ 0

(DP)

Set of disjunctionsTerms of disjunction 𝑘

At least one subset of 
constraints ℎ𝑖,𝑘(𝑥) ≤ 𝑏𝑖,𝑘
must hold



Generalized Disjunctive Programming

• Logic-based modelling framework
(Raman & Grossmann, 1994)
– 220 citations, #8 (web of Science)

• Adds Boolean variables and logic propositions
– Selection of a given term in a disjunction may affect other 

constraints
• Chemical process synthesis (Raman & Grossmann, 1991)
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min𝑓(𝑥)

𝑠. 𝑡. 𝑔 𝑥 ≤ 0

 

𝑖∈𝐷𝑘

𝑌𝑖,𝑘
𝐴𝑖,𝑘𝑥 ≤ 𝑏𝑖,𝑘

∀𝑘 ∈ 𝐾

Ω 𝑌 = 𝑇𝑟𝑢𝑒

𝑥 ∈ ℝ𝑛, 𝑥 ≥ 0, 𝑌 ∈ {𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒}𝑚

(GDP)

Direct correspondence
with {0,1} variables 𝑦

Boolean variables 
appear explicitly inside 
disjunctive terms

Logic propositions



Reformulation of a GDP into MILP

• Disjunctions (Balas, 1985)
– Big-M

• Simplest form but yields poor relaxations

– Convex hull
• At least as tight as big-M but increases problem size and is much harder 

– Common constraint

• Logic propositions
– Replace with linear inequalities (Clocksin & Mellish, 1981)
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𝐴𝑖,𝑘𝑥 ≤ 𝑏𝑖,𝑘 +𝑀𝑖,𝑘 1 − 𝑦𝑖,𝑘 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘

𝑀𝑖,𝑘 = max 𝐴𝑖,𝑘𝑥 − 𝑏𝑖,𝑘: 0 ≤ 𝑥
𝐿 ≤ 𝑥 ≤ 𝑥𝑈 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘

Tightest big-M parameters

 

𝑖∈𝐷𝑘

𝑦𝑖,𝑘 ≥ 1 ∀𝑘 ∈ 𝐾

𝑥 =  

𝑖∈𝐷𝑘

 𝑥𝑖,𝑘 ∀𝑘 ∈ 𝐾
𝐴𝑖,𝑘  𝑥𝑖,𝑘 ≤ 𝑏𝑖,𝑘𝑦𝑖,𝑘 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘

 𝑥𝑖,𝑘
𝐿 𝑦𝑖,𝑘 ≤ 𝐴𝑖,𝑘  𝑥𝑖,𝑘 ≤  𝑥𝑖,𝑘

𝑈 𝑦𝑖,𝑘 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷𝑘
Disaggregated variables

(new set)

Tighter 
bounds



Remarks about big-M way of modeling

• Used extensively by many researchers
– Avoids bilinear terms

• Few bother to calculate 𝑀𝑖,𝑘 (global value 𝑀 used instead)

– Output from big-M reformulation might not be a big-M constraint
• Example from scheduling with multiple time grids (Castro & Grossmann, 2012)
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𝐼𝐹 𝑦𝑖,𝑘 = 1 𝑇𝐻𝐸𝑁 𝐴𝑖,𝑘𝑥 ≤ 𝑏𝑖,𝑘

𝐴𝑖,𝑘𝑥 ≤ 𝑏𝑖,𝑘 +𝑀𝑖,𝑘 1 − 𝑦𝑖,𝑘

𝐴𝑖,𝑘𝑥𝑦𝑖,𝑘 ≤ 𝑏𝑖,𝑘𝑦𝑖,𝑘

Holds true 
for 𝑦𝑖,𝑘 = 0

regardless 
of 𝑥

 

𝑖

𝑦𝑖,𝑘
𝑥𝑘+1 − 𝑥𝑘 ≥ 𝑝𝑖
𝑥𝑘 ≥ 𝑟𝑖

∀𝑘
𝑥𝑘+1 − 𝑥𝑘 ≥ 𝑝𝑖 −𝑀𝑖,𝑘

1 1 − 𝑦𝑖,𝑘 ∀𝑖, 𝑘

𝑥𝑘 ≥ 𝑟𝑖 −𝑀𝑖,𝑘
2 1 − 𝑦𝑖,𝑘 ∀𝑖, 𝑘

𝑀𝑖,𝑘
1 = max 𝑥𝑘 − 𝑥𝑘+1 + 𝑝𝑖: 𝑥𝑘 − 𝑥𝑘+1 ≤ 0 = 𝑝𝑖

𝑀𝑖,𝑘
2 = max −𝑥𝑘 + 𝑟𝑖: 𝑥𝑘 ≥ 0 = 𝑟𝑖

But we can infer that

𝑥𝑘+1 − 𝑥𝑘 ≥ 𝑝𝑖 ∙ 𝑦𝑖,𝑘∀𝑖, 𝑘

𝑥𝑘 ≥ 𝑟𝑖 ∙ 𝑦𝑖,𝑘 ∀𝑖, 𝑘



Remarks about convex hull reformulation

• Always check if disaggregated variables can be removed
– Compact or sharp formulation (Jeroslow and Lowe, 1984)

• Example 1: Modeling a semi-continuous variable
– Flow in a unit only if the unit is selected from the superstructure

• Example 2: Scheduling with multiple time grids revisited
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𝑦

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈
 
¬𝑦
𝑥 = 0

𝑥 =  𝑥1 +  𝑥2

𝑥𝐿𝑦 ≤  𝑥1 ≤ 𝑥𝑈𝑦
 𝑥2 = 0 ∙ (1 − 𝑦)

𝑥𝐿𝑦 ≤ 𝑥 ≤ 𝑥𝑈𝑦

 

𝑖

𝑦𝑖,𝑘
𝑥𝑘+1 − 𝑥𝑘 ≥ 𝑝𝑖
𝑥𝑘 ≥ 𝑟𝑖

∀𝑘

CPUs
Big-M

(up to 1 h)
Convex hull

Compact

Convex hull

EX6 Suboptimal 123 1.53

EX7 No solution 21.6 1.07

EX8 No solution 80.3 1.80

EX9 No solution 63.3 0.59

EX10 No solution 213 3.91

𝑥𝑘 = 
𝑖
 𝑥𝑘,𝑖,𝑘 ∀𝑘

𝑥𝑘+1 = 
𝑖
 𝑥𝑘+1,𝑖,𝑘 ∀𝑘

 𝑥𝑘+1,𝑖,𝑘 −  𝑥𝑘,𝑖,𝑘 ≥ 𝑝𝑖 ∙ 𝑦𝑖,𝑘 ∀𝑖, 𝑘

 𝑥𝑘,𝑖,𝑘 ≥ 𝑟𝑖 ∙ 𝑦𝑖,𝑘 ∀𝑖, 𝑘

 
𝑖
𝑦𝑖,𝑘 = 1 ∀𝑘

Shared by convex hull & 
compact convex hull

𝑥𝑘+1 − 𝑥𝑘 ≥ 
𝑖
𝑝𝑖 ∙ 𝑦𝑖,𝑘 ∀𝑘

𝑥𝑘 ≥ 
𝑖
𝑟𝑖 ∙ 𝑦𝑖,𝑘 ∀𝑘

Similar to big-M



Advantages of modeling with GDP

• GDP model much easier to understand

– Constraints

• In their simplest (linear) form

• Fewer in number

– Particularly relevant for complex problems

• Not uncommon to find research papers featuring MILP models with 

50-100 constraints, mostly big-M

– How can one assess model efficiency?

• Conversion to MILP format can be automated

– LogMIP for GAMS (Vecchietti & Grossmmann, 2007)

• Works for very simple cases, cannot handle disjunctions over a set

• Useful guidelines for hands-on approach needed

– When is it worth to derive convex hull reformulation?
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Worth to derive convex hull?

• General precedence

– Answer: No (disaggregated variables with 6 indices)

• Forbid task execution on a given time window

– Maybe (disaggregated variables with 3 indices)

• Single task per unit

– Absolutely, no additional variables and constraints
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𝑌𝑡,𝑚,𝑡´,𝑚´
𝑇𝑚𝑡,𝑚 + 𝑠𝑑𝑡 ≤ 𝑇𝑚𝑡´,𝑚´

 

−

¬𝑌𝑡,𝑚,𝑡´,𝑚´
𝑇𝑚𝑡´,𝑚´ + 𝑠𝑑𝑡´ ≤ 𝑇𝑚𝑡,𝑚

∀ 𝑡, 𝑡´, 𝑚´ > 𝑚

Two variables involved Similar constraint but the indices have changed

𝑍𝑡,𝑚,𝑡𝑢
𝑇𝑚𝑡,𝑚 + 𝑠𝑑𝑡 ≤ 𝑢𝑡𝑢

𝐿  

−

¬𝑍𝑡,𝑚,𝑡𝑢

𝑇𝑚𝑡,𝑚 ≥ 𝑢𝑡𝑢
𝑈 ∀ 𝑡,𝑚, 𝑡𝑢

Single variable Different constraint

 

𝑖

𝑦𝑖,𝑘
𝑥𝑘+1 − 𝑥𝑘 ≥ 𝑝𝑖
𝑥𝑘 ≥ 𝑟𝑖

∀𝑘 Variables index different than disjunction index





Relaxation of bilinear term 𝑧𝑖𝑗 = 𝑥𝑖𝑥𝑗

• Tightest continuous 

relaxation

– McCormick (1976)

• Piecewise McCormick envelopes

– Bergamini et al. (2005)
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𝑧𝑖𝑗 ≥ 𝑥𝑖 ⋅ 𝑥𝑗
𝐿 + 𝑥𝑖

𝐿 ⋅ 𝑥𝑗 − 𝑥𝑖
𝐿 ⋅ 𝑥𝑗
𝐿

𝑧𝑖𝑗 ≥ 𝑥𝑖 ⋅ 𝑥𝑗
𝑈 + 𝑥𝑖

𝑈 ⋅ 𝑥𝑗 − 𝑥𝑖
𝑈 ⋅ 𝑥𝑗
𝑈

𝑧𝑖𝑗 ≤ 𝑥𝑖 ⋅ 𝑥𝑗
𝐿 + 𝑥𝑖

𝑈 ⋅ 𝑥𝑗 − 𝑥𝑖
𝑈 ⋅ 𝑥𝑗
𝐿

𝑧𝑖𝑗 ≤ 𝑥𝑖 ⋅ 𝑥𝑗
𝑈 + 𝑥𝑖

𝐿 ⋅ 𝑥𝑗 − 𝑥𝑖
𝐿 ⋅ 𝑥𝑗
𝑈

Underestimators

Overestimators

Domain of 𝑥𝑗
divided

into 𝑁 partitions

Single active partition

. . .
𝑥𝑗
𝐿

𝑥𝑗
𝑈𝑥𝑗,1

𝐿 𝑥𝑗,2
𝐿 𝑥𝑗,𝑁

𝐿

𝑥𝑗,𝑁
𝑈𝑥𝑗,𝑁−1

𝑈𝑥𝑗,1
𝑈𝑛 = 1 𝑛 = 𝑁

𝑦𝑗,1 = 𝑡𝑟𝑢𝑒 𝑦𝑗,𝑁 = 𝑡𝑟𝑢𝑒∨ ∨. . .

∨
𝑛

𝑦𝑗,𝑛

𝑧𝑖𝑗 ≥ 𝑥𝑖 ⋅ 𝑥𝑗,𝑛
𝐿 + 𝑥𝑖

𝐿 ⋅ 𝑥𝑗 − 𝑥𝑖
𝐿 ⋅ 𝑥𝑗,𝑛
𝐿

𝑧𝑖𝑗 ≥ 𝑥𝑖 ⋅ 𝑥𝑗,𝑛
𝑈 + 𝑥𝑖

𝑈 ⋅ 𝑥𝑗 − 𝑥𝑖
𝑈 ⋅ 𝑥𝑗,𝑛
𝑈

𝑧𝑖𝑗 ≤ 𝑥𝑖 ⋅ 𝑥𝑗,𝑛
𝐿 + 𝑥𝑖

𝑈 ⋅ 𝑥𝑗 − 𝑥𝑖
𝑈 ⋅ 𝑥𝑗,𝑛
𝐿

𝑧𝑖𝑗 ≤ 𝑥𝑖 ⋅ 𝑥𝑗,𝑛
𝑈 + 𝑥𝑖

𝐿 ⋅ 𝑥𝑗 − 𝑥𝑖
𝐿 ⋅ 𝑥𝑗,𝑛
𝑈

𝑥𝑗,𝑛
𝐿 ≤ 𝑥𝑗 ≤ 𝑥𝑗,𝑛

𝑈

∀𝑖, 𝑗

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈

𝑥𝑗,𝑛
𝐿 = 𝑥𝑗

𝐿 + (𝑥𝑗
𝑈 − 𝑥𝑗

𝐿) ⋅ (𝑛 − 1)/𝑁

𝑥𝑗,𝑛
𝑈 = 𝑥𝑗

𝐿 + (𝑥𝑗
𝑈 − 𝑥𝑗

𝐿) ⋅ 𝑛/𝑁

Partition dependent 
bounds for 𝑥𝑗

Disjunction index (𝑛) 
≠ variables index (𝑖, 𝑗) 



PCM relaxation of bilinear program

• MILP is derived from convex hull reformulation
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𝑥𝑗𝑛
𝐿 = 𝑥𝑗

𝐿 +
𝑥𝑗
𝑈−𝑥𝑗
𝐿 ∙ 𝑛−1

𝑁

𝑥𝑗𝑛
𝑈 = 𝑥𝑗

𝐿 +
𝑥𝑗
𝑈−𝑥𝑗
𝐿 ∙𝑛

𝑁

𝑥𝑗𝑛
𝐿 ⋅ 𝑦𝑗𝑛 ≤  𝑥𝑗𝑛 ≤ 𝑥𝑗𝑛

𝑈 ⋅ 𝑦𝑗𝑛

∀ 𝑗 𝑖, 𝑗 ∈ 𝐵𝐿 , 𝑛 ∈ {1,… ,𝑁}

𝑧𝑖𝑗 ≥ 
𝑛=1

𝑁

 𝑥𝑖𝑗𝑛 ⋅ 𝑥𝑗𝑛
𝐿 + 𝑥𝑖

𝐿 ⋅  𝑥𝑗𝑛 − 𝑥𝑖𝑗𝑛
𝐿 ⋅ 𝑥𝑗𝑛

𝐿 ⋅ 𝑦𝑗𝑛

𝑧𝑖𝑗 ≥ 
𝑛=1

𝑁

 𝑥𝑖𝑗𝑛 ⋅ 𝑥𝑗𝑛
𝑈 + 𝑥𝑖

𝑈 ⋅  𝑥𝑗𝑛 − 𝑥𝑖𝑗𝑛
𝑈 ⋅ 𝑥𝑗𝑛

𝑈 ⋅ 𝑦𝑗𝑛

𝑧𝑖𝑗 ≤ 
𝑛=1

𝑁

 𝑥𝑖𝑗𝑛 ⋅ 𝑥𝑗𝑛
𝐿 + 𝑥𝑖

𝑈 ⋅  𝑥𝑗𝑛 − 𝑥𝑖𝑗𝑛
𝑈 ⋅ 𝑥𝑗𝑛

𝐿 ⋅ 𝑦𝑗𝑛

𝑧𝑖𝑗 ≤ 
𝑛=1

𝑁

 𝑥𝑖𝑗𝑛 ⋅ 𝑥𝑗𝑛
𝑈 + 𝑥𝑖

𝐿 ⋅  𝑥𝑗𝑛 − 𝑥𝑖𝑗𝑛
𝐿 ⋅ 𝑥𝑗𝑛

𝑈 ⋅ 𝑦𝑗𝑛

𝑥𝑖 = 
𝑛=1

𝑁

 𝑥𝑖𝑗𝑛

∀ (𝑖, 𝑗) ∈ 𝐵𝐿

 𝑥𝑖
𝐿 ⋅ 𝑦𝑗𝑛 ≤  𝑥𝑖𝑗𝑛 ≤ 𝑥𝑖

𝑈 ⋅ 𝑦𝑗𝑛 ∀ (𝑖, 𝑗) ∈ 𝐵𝐿, 𝑛 ∈ {1,… ,𝑁

min 𝑧𝑅 = 𝑓0 𝑥 =  

𝑖,𝑗 ∈𝐵𝐿

𝑎𝑖𝑗0𝑤𝑖𝑗 + ℎ0 𝑥

𝑓𝑞 𝑥 =  

𝑖,𝑗 ∈𝐵𝐿

𝑎𝑖𝑗𝑞𝑤𝑖𝑗 + ℎ𝑞 𝑥 ≤ 0 ∀𝑞 ∈ 𝑄\{0}

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

𝑥 ∈ ℝ𝑚

𝑦𝑗𝑛 ∈ 0,1 ∀ 𝑗 𝑖, 𝑗 ∈ 𝐵𝐿 , 𝑛 ∈ {1,… ,𝑁}

𝑥𝑗 =  

𝑛=1

𝑁

 𝑥𝑗𝑛

 

𝑛=1

𝑁

𝑦𝑗𝑛 = 1

∀ {𝑗|(𝑖, 𝑗) ∈ 𝐵𝐿}

Summation eliminates the need for 
disaggregated variables linked to 𝑧𝑖𝑗



Bilinear term approximation  𝑧𝑖𝑗 ≈ 𝑧𝑖𝑗 = 𝑥𝑖𝑥𝑗

• Multiparametric disaggregation (Teles et al. 2013)
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𝜂 = log10 𝑥𝑗
𝑈

Defines accuracy level

 

𝑝=0

9 𝑦𝑗,𝑝,𝑘

 𝑥𝑗,𝑘 = 𝑝 ⋅ 10
𝑘

 𝑧𝑖𝑗,𝑘 = 𝑥𝑖 ⋅ 𝑝 ⋅ 10
𝑘

∀𝑘

7

8

3

4

1

2

6

7

9

0

5

6

_ _ _._ _ _

102 100 10-2101 10-1 10-3

⋯

 𝑥𝑗 = 

𝑘

 

𝑝

𝑝 ⋅ 10𝑘 ⋅ 𝑦𝑗,𝑝,𝑘

 𝑧𝑖𝑗 = 

𝑘

 

𝑝

 𝑥𝑖,𝑝,𝑘 ⋅ 𝑝 ⋅ 10
𝑘

𝑥𝑖 = 

𝑝

 𝑥𝑖,𝑝,𝑘 ;  

𝑝

𝑦𝑗,𝑝,𝑘 = 1 , ∀𝑘

𝑥𝑖
𝐿 ⋅ 𝑦𝑗,𝑝,𝑘 ≤  𝑥𝑖,𝑝,𝑘 ≤ 𝑥𝑖

𝑈 ⋅ 𝑦𝑗,𝑝,𝑘 , ∀𝑝, 𝑘

𝑥𝑗
𝐿 ≤  𝑥𝑗 ≤ 𝑥𝑗

𝑈

 𝑥𝑖,𝑝,𝑘 ≥ 0 ; 𝑦𝑗,𝑝,𝑘 ∈ 0,1 , ∀𝑝, 𝑘

Complete MILP formulation

Convex 

hull

 𝑧𝑖𝑗 = 𝑥𝑖  𝑥𝑗 = 𝑥𝑖 

𝑘=𝜓

𝜂

 𝑥𝑗,𝑘 MDT discretizes domain of variable 𝑥𝑗 up to a certain accuracy 





Seasonal electricity tariffs in a power plant

November 17, 2014 19In Honor of Ignacio Grossmann's 65th Birthday I

Winter

Period 

𝑡𝑝 − 1 Period 𝑡𝑝 + 1
𝑡𝑝

$40 $75 $40 /(MWh)𝑐𝑒𝑡𝑝+1 =

𝐴𝑡,𝑚,𝑡𝑝 + 𝐵𝑡,𝑚,𝑡𝑝 + 𝐶𝑡,𝑚,𝑡𝑝 + 𝐷𝑡,𝑚,𝑡𝑝 + 𝐸𝑡,𝑚,𝑡𝑝 + 𝐹𝑡,𝑚,𝑡𝑝 = 1 max𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 

𝑡

 

𝑚

 

𝑡𝑝

∆𝑇𝑡,𝑚,𝑡𝑝 ∙ 𝑐𝑒𝑡𝑝 ∙ 𝑝𝑤𝑚

Constant price 
period tp

Online (t,m)

period tp-1 period tp+1

Location type

𝐴𝑡,𝑚,𝑡𝑝

𝑇𝑠𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿

𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈

𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿

𝑇𝑒𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈

∆𝑇𝑡,𝑚,𝑡𝑝= 𝑃𝑡,𝑚

 

−

𝐵𝑡,𝑚,𝑡𝑝

𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝐿

(𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈 )

𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿

𝑇𝑒𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈

∆𝑇𝑡,𝑚,𝑡𝑝= 𝑇𝑒𝑡,𝑚 − 𝑐𝑝𝑡𝑝
𝐿

 

−

 

−

𝐶𝑡,𝑚,𝑡𝑝

𝑇𝑠𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿

𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈

(𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿 )

𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝑈

∆𝑇𝑡,𝑚,𝑡𝑝= 𝑐𝑝𝑡𝑝
𝑈 − 𝑇𝑠𝑡,𝑚

 

−

𝐷𝑡,𝑚,𝑡𝑝

𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝐿

(𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈 )

(𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿 )

𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝑈

∆𝑇𝑡,𝑚,𝑡𝑝= 𝑐𝑝𝑡𝑝
𝑈 − 𝑐𝑝𝑡𝑝

𝐿

 

−

 

−

𝐸𝑡,𝑚,𝑡𝑝

(𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝐿 )

(𝑇𝑠𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈 )

𝑇𝑒𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝐿

(𝑇𝑒𝑡,𝑚 ≤ 𝑐𝑝𝑡𝑝
𝑈 )

∆𝑇𝑡,𝑚,𝑡𝑝= 0

 

−

𝐹𝑡,𝑚,𝑡𝑝

(𝑇𝑠𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿 )

𝑇𝑠𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝑈

(𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝐿 )

(𝑇𝑒𝑡,𝑚 ≥ 𝑐𝑝𝑡𝑝
𝑈 )

∆𝑇𝑡,𝑚,𝑡𝑝= 0

∀ 𝑡,𝑚, 𝑡𝑝

 

𝑡𝑝

∆𝑇𝑡,𝑚,𝑡𝑝 ≤ 𝑃𝑡,𝑚 ∀ 𝑡,𝑚Tightening constraint

N
o

ld
e

&
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o
ra

ri
(2

0
1

0
)



Steam sharing in a pulp plant

• Multipurpose plant, single 
grid, RTN-based approach

– Superstructure (2001)

• Multistage plant, multiple time 
grids, GDP-based

– Embedded disjunctions (2013)

• Wednesday, 5 PM, Hilton 406-7
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Ii
H1(i,i)

S3H1(i,i’’)

Ii

H0(i,i)

S90

S2

SIT,i’ H0(i,i’)

Ii’

H1(i’,i’)

S3 Ii’

H0(i’,i’’’)

H0(i’,i’)

S90

Ii’

S2

SIT,i’’’H1(i’,i)

Ii

.

.

.

.

.

.

.

.

.

.

.

.

H0(i,i´) H1(i)H1(i´)  H0(i,i) H1(i)
ii 


´

 
−
𝑖

𝑌𝑖,𝑡

𝑇𝑒𝑡,𝑚 = 𝑇𝑠𝑡,𝑚
90 + 𝑝𝑖,𝑚

∨

𝑖´ ≠ 𝑖

𝑍𝑖,𝑖´,𝑡

𝑇𝑠𝑡,𝑚
90 = 𝑇𝑠𝑡,𝑚 + 𝑝𝑖,𝑖´

𝐻0

𝑇𝑒𝑡,𝑚−1 ≤ 𝑇𝑠𝑡,𝑚 − 𝑝𝑖´,𝑚

 

−

𝑍𝑖,𝑖,𝑡

𝑇𝑠𝑡,𝑚
90 = 𝑇𝑠𝑡,𝑚 + 𝑝𝑖,𝑖

𝐻0

∀𝑚, 𝑡

Approach Discrete-time
Continuous-time

Discrete-time
Continuous-time

Single grid Multiple grids Single grid Multiple grids

Binary variables 33263 2688 79 31583 3584 79

Constraints 30932 3331 132 29372 4435 132

Cycle time H (min) 594 606 594 564 571 564

Total CPU (s) 563 576 0.11 217 25252 0.21



Direct heat integration in a batch plant

• Extension of Yee et al. (1990) model for continuous plants
– Two-stage heating/cooling with matches in parallel

– Possible interactions between hot & cold stream modelled with GDP
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Heat 
integration


hot task h

cold task c

Heat 
integration


hot task h

cold task c

Heat 
integration


hot task h

cold task c

Heat 
integration


h

cN
o

 o
ve

rl
ap

𝑌ℎ,𝑐
𝑠𝑠

𝑇𝑠ℎ = 𝑇𝑠𝑐
𝑇𝑚ℎ = 𝑇𝑚𝑐
𝑇ℎ
∗ ≥ 𝑇𝑐

∗ + ∆𝑡

𝑄ℎ,𝑐
𝑠𝑠 ≤ 𝑞ℎ,𝑐

𝑄ℎ,𝑐
𝑠𝑒 , 𝑄ℎ,𝑐
𝑒𝑠 , 𝑄ℎ,𝑐
𝑒𝑒 = 0

 
−

𝑌ℎ,𝑐
𝑠𝑒

𝑇𝑠ℎ = 𝑇𝑚𝑐
𝑇𝑚ℎ = 𝑇𝑒𝑐
𝑇ℎ
∗ ≥ 𝑡𝑐

𝑜𝑢𝑡 + ∆𝑡

𝑄ℎ,𝑐
𝑠𝑒 ≤ 𝑞ℎ,𝑐

𝑄ℎ,𝑐
𝑠𝑠 , 𝑄ℎ,𝑐
𝑒𝑠 , 𝑄ℎ,𝑐
𝑒𝑒 = 0

 
−

𝑌ℎ,𝑐
𝑒𝑠

𝑇𝑚ℎ = 𝑇𝑠𝑐
𝑇𝑒ℎ = 𝑇𝑚𝑐
𝑡ℎ
𝑜𝑢𝑡 ≥ 𝑇𝑐

∗ + ∆𝑡

𝑄ℎ,𝑐
𝑒𝑠 ≤ 𝑞ℎ,𝑐

𝑄ℎ,𝑐
𝑠𝑠 , 𝑄ℎ,𝑐
𝑠𝑒 , 𝑄ℎ,𝑐
𝑒𝑒 = 0

 
−

𝑌ℎ,𝑐
𝑒𝑒

𝑇𝑚ℎ = 𝑇𝑚𝑐
𝑇𝑒ℎ = 𝑇𝑒𝑐
𝑡ℎ
𝑜𝑢𝑡 ≥ 𝑡𝑐

𝑜𝑢𝑡 + ∆𝑡

𝑄ℎ,𝑐
𝑒𝑒 ≤ 𝑞ℎ,𝑐

𝑄ℎ,𝑐
𝑠𝑠 , 𝑄ℎ,𝑐
𝑠𝑒 , 𝑄ℎ,𝑐
𝑒𝑠 = 0

 
−

𝑌ℎ,𝑐
𝑛𝑜

𝑇𝑠ℎ ≥ 0
𝑇𝑠𝑐 ≥ 0

𝑄ℎ,𝑐
𝑠𝑠 , 𝑄ℎ,𝑐
𝑠𝑒 , 𝑄ℎ,𝑐
𝑒𝑠 , 𝑄ℎ,𝑐
𝑒𝑒 = 0

∀ ℎ, 𝑐



Conclusions

• Overview of the basics of linear GDP

• Identification of desired type of disjunctions
– Leading to sharp (compact) convex hull reformulations

• Examples of global optimization approaches that validate such analysis
– Piecewise McCormick envelopes

– Multiparametric Disaggregation Technique

• GDP makes it easier to model complex scheduling problems
– Alternative formulation with improved performance 

• Orders of magnitude

• Much more about GDP
– Recent reviews by Grossmann & Trespalacios (2013,14)

• Further tightening through basic steps

• Logic based algorithms for convex GDP

• Non-convex GDP

• Several research groups worldwide rely on GDP for modeling
– Many more need to realize how powerful it is!
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