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SIMULATION OPTIMIZATION

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory
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PROCESS DISAGGREGATION

Block 1: Model
Simulator generation

r——— v TS 'ij min  f(x)
I =11 : < I
i \ TE=1 i Block 2: Model st g(x) <0
| i I—=4il ! Simulator generation h(x) =
1 i I <« |
:.____.' I______.! S [xlaaju]
\ < § J
Block 3: Model
Simulator generation
Process Simulation Surrogate Models Optimization Model
Disaggregate process into Build simple and accurate Add algebraic constraints
process blocks models with a functional design specs, heat/mass
form tailored for an balances, and logic
optimization framework constraints
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LEARNING PROBLEM

Build a model of output variables z as a function of
input variables X over a specified interval

Process simulation or Experiment

xt < x < x z = f(x)
Independent variables: Dependent variables:
Operating conditions, inlet flow Efficiency, outlet flow conditions,
properties, unit geometry conversions, heat flow, etc.
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HOW TO BUILD THE SURROGATES

e We aim to build surrogate models that are

— Accurate
We want to reflect the true nature of the simulation

— Simple
Tailored for algebraic optimization

f(x) =Y ~iexp (%) + B0+ Bix+...
1=1

~

— Generated from a minimal data set
Reduce experimental and simulation requirements
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )

Y

Initial sampling

A 4

p
Build surrogate

A 4

model __
) W
4 . N\
tUp.d"f‘te Adaptive Model
raining sampling ode
data set J error

A

N New model
Current model

false MOdeI
converged?

N )
true Black-box function

(__Stop )
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MODEL COMPLEXITY TRADEOFF

Kriging [Krige, 63]
Neural nets [McCulloch-Pitts, 43]
Radial basis functions [Buhman, 00]

>

Preferredf ~ _~
region § _

Model accuracy

Linear response surface

>

Model complexity
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MODEL IDENTIFICATION

* Goal: Identify the functional form and complexity of the
surrogate models
z = f(z)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X;(z)

I.  Polynomial (za)®

II. ~ Multinomial H ()™
deD'CD

(8] (e
ITT. Exponential and logarithmic  exp (“fy—d) , log (%)

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.
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OVERFITTING AND TRUE ERROR

e Step 1: Define a large set of potential basis functions

= Po + 1z + Poxo + Baziza + Pae™ + P5e™? +

* Step 2: Model rm\ I

r)=24x4+5

Error

Idealpﬂodel

< True error

Empirical error

! CompIeX|ty

<
Underfitting ' Overflttlng
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MODEL REDUCTION TECHNIQUES

 Qualitative tradeoffs of model
reduction methods

Best subset methods
* Enumerate all possible
subsets

Regularized regression techniques
* Penalize the least squares objective using the
magnitude of the regressors [Tibshirani, 95]

Stepwise regression [Efroymson, 60]

Backward elimination [Oosterhof, 63]
Forward selection [Hamaker, 62]
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MODEL SIZING

Solve for the
best one-term

Solve for the

Goodness-of-fit Z | best two-term
measure il 6" term was not worth the

% y added complexity
Final model includes 5 terms
Some measure of

error that is V
sensitive to /.
overfitting

(AlCc, BIC, Cp)

1 1 1 1 1 1 1 n
| | | | | | | -

Complexity = number of terms allowed in the model
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BASIS FUNCTION SELECTION

Find the model with the
least error

yj =1 — Yi=0_

T
Basis function used in the Wodel \4 Basis function NOT used
f3; is chosen to satisfy a leas) eWill solve this modelddrincreasing T

SUATES ITegression until we determine a model size
(assumes loose bounds on f3;) ;=0

K \
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )

Y

Initial sampling

Y

[ Build surrogate

Y

model
\\§
4 x4 N\
Update Adaptive
training samolin
data set PIing J
false MOdeI

converged? . . .
Error maximization
true o
(stop ) sampling
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ERROR MAXIMIZATION SAMPLING

e Search the problem space for areas of model inconsistency
or model mismatch

* Find points that maximize the model error with respect to
the independent variables

Surrogate model

max (Z(a’»‘) - 2(58))2

x z(x)

— Derivative-free solvers work well in low-dimensional spaces
[Rios and Sahinidis, 12]

— Optimized using a black-box or derivative-free solver (SNOBFIT)
[Huyer and Neumaier, 08]
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COMPUTATIONAL RESULTS

 Goal — Compare methods on three target metrics
. Model accuracy . Data efficiency . Model simplicity

* Modeling methods compared

— ALAMO modeler — Proposed methodology
— The LASSO - The lasso regularization
— Ordinary regression — Ordinary least-squares regression

e Sampling methods compared (over the same data set size)
— ALAMO sampler — Proposed error maximization technique
— Single LH - Single Latin hypercube (no feedback)
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. Model accuracy E Data efficiency B Model simplicity

Fraction of problems solved

1.00 ALAMO modeler
0.99 the lasso _
0.97 Ordinary regression

problems
solved exactly

(0.005, 0.80)
80% of the problems
had <0.5% error

error maximization sampling
1

0.00 - .
0 0.005 0.01
NOrmall_z_?Ei_t_e_s’EE[r_qr _______ 0.95 ALAMO modeler
=TT e s P— 0.84 Ordinary regression
0.671" e 0.87 the lasso
. '--ﬁﬁ:._.’.n-
/ e
0.00 single Latin hypercube

0 0.005 0.01
Normalized test error
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. 1l Model accuracy . Data efficiency B Model simplicity

Fraction of 1o

problems solved
0.5

0.0
1.0

0.5

0.0
1.0

0.5

1 1.00 ALAMO sampler
0.95 Single LH

ALAMO modeler

fffff I 0.99 ALAMO sampler
0.84 Single LH

________
o o
-

7 ALAMO sampler
Slngle LH

Ordinary regression

0 0.005

0.01
Normalized test error
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Model accuracy E Data efficiency B Model simplicity

Modeling type, Median more complexity than required

ALAMO modeler, 0 | E
The lasso, 4 — +
Ordinary regression, 9 | .
-1I0 0 lb 2I0 36 40‘

terms in model of terms

Number of ] B [ True number ]

Results over a test set of 45 known functions treated as black boxes
with bases that are available to all modeling methods.
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MODEL SELECTION CRITERIA

e Balance fit (sum of square errors) with model complexity
(number of terms in the model; denoted by p)

Corrected Akaike Information Criterion

2p(p+ 1)
N—p-1

N
1
AIC. = N log Nz(zi —X;B)? | +2p +
i=1

Mallows’ Cp
L1(zi — X;B)? 4

2
o
Hannan-Quinn Information Criterion

Cp =

p—N

1 N
HQC = Nlog| % > (2= X;B)? | + 2p log(log(N))
i=1

Bayes Information Criterion
N
i=1(zi — X;B)?

BIC = — + p log(N)
o
Mean Squared Error
VSE — YiLi(zi — XiB)?
N—p-1
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CPU TIME COMPARISON

* Eight benchmarks from the UCl and CMU data sets

e Seventy noisy data sets were generated with multicolinearity
and increasing problem size (humber of bases)

Cp ——BIC —-AIC, MSE, HQC

e BIC solves more than
two orders of magnitude
faster than AIC, MSE and

HQC
— Optimized directly via a
1 single mixed-integer

=
o
o

CPU time (s)

0.1
convex quadratic model

0.01

Problem Size
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MODEL QUALITY COMPARISON

* BIC leads to smaller, more accurate models
— Larger penalty for model complexity

!

Cp ——BIC HQC ——MSE

=
o

N
(]

Spurious Variables Included
% Deviation from True Model

20 30 40 50 60 70 80

0 & . Problem Size

20 30 40 50 60 70 80

Problem Size
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ALAMO REMARKS

New
surrogate
model

Surrogate
model

4

‘o .
" Maximizat\o® RebUild mode\

* Expanding the scope of algebraic optimization

— Using low-complexity surrogate models to strike a balance
between optimal decision-making and model fidelity

e Surrogate model identification

— Simple, accurate model identification — Integer optimization
e Error maximization sampling

— More information found per simulated data point
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THEORY UTILIZATION

empirical data non-empirical information

e Use freely available system knowledge to strengthen model
— Physical limits
— First-principles knowledge
— Intuition

 Non-empirical restrictions can be applied to general
regression problems
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CONSTRAINED REGRESSION

e Challenging due to the semi-infinite nature of the regression

constraints

Standard regression .
1min

)81 :62
easy
4 s.t.

[Iamél Z (zi — 2(s; B, 52))2
1,2

=1
min
tough B1,82

S.t.
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IMPLIED PARAMETER RESTRICTIONS

Find a model Z such that zZ(z) > 0 with a fixed model form:

ix) = fra+ Poa?

Step 1: Formulate Step 2: Identify a sufficient
constraint in z- and x-space set of B-space constraints
1 2 1 2
min Z (zZ — [61 x + Ba QJSD min Z (Zz — [61 x + Bo ZL’B])
B1,82 1 B1,82 o
st. Bix+Perd>0 ze€ 0, 1] s.t. | 0.240 81 + 0.0138 85 > 0
. pm< 0.281 81 + 0.0223 B > 0
0.138 81 + 0.00263 32 > 0

4 B-constraints
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TYPES OF RESTRICTIONS

pressure, temperature,
compositions

F(mt (1) S Fin

mass and energy balances,
physical limitations

1+ 29+ 23=1

e

mass balances, sum-to-
one, state variables

monotonicity, numerical
properties, convexity

safe extrapolation,
boundary conditions

Add
no slip

o(R,0)=0 V0
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CARBON CAPTURE SYSTEM DESIGN

lean

sorbent [ COz-rich gas : compression '

D — . I

CO2-lean gas ¥ | chain |
> . I

r H2 j Co

Surrogate models for
each reactor and

cold in /\;j .
dﬂ' 4_
technology used T
T | i
i parallel trains — a2 d —
| I

____________ A A
L J \J
cold out <—< - warm d hot out

cold in — in . «— hot in

A A
FJ,\ — <+ steam
flue gas —» D =(? —<
S t 1 & rich H3 M‘ﬁ <— feed CO2
util in sorbent C2

* Discrete decisions: How many units? Parallel trains?
What technology used for each reactor?

e Continuous decisions: Unit geometries

e Operating conditions: Vessel temperature and pressure, flow rates,
compositions
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SUPERSTRUCTURE OPTIMIZATION

Mixed-integer nonlinear
programming model

coolln

solidLean

e Economic model
e Process model
e Material balances

coolOut

 Hydrodynamic/Energy balances e
 Reactor surrogate models hotin
* Link between economic model coldin Underflow

and process model
* Binary variable constraints
 Bounds for variables

hotOut

hotin

hotOut

Other Trains

| utilln
fgin flueln
— flu

eQut

warmOut feedCO2F
utilOut solidRich
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GLOBAL MINLP SOLVERS ON CMU/IBMLIB

Perfornance Profile

160 ey e rst—s BARON 14
9g | i SCIP
8T ANTIGONE
| e
68 -

| LINDOGLOBAL
58 .

Percent Of Hodels Solwved

BARON 13
48 -
{ COUENNE
38
BARON13 ——
28 - BARON1432 ——
COINCOUENNE —%—
LINDOGLOBAL —5—
18 ¢ SCIP
ANTIGONE —&—
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H 1 1 1 " 1 1 PR 1 1 1 " PR 1 " 1 1 1 " 1 P |
1 108 100 1000
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CONCLUSIONS

ALAMO provides algebraic models that are
v’ Accurate and simple
v' Generated from a minimal number of function evaluations

ALAMO'’s constrained regression facility allows modeling of
v' Bounds on response variables

v Convexity/monotonicity of response variables

On-going efforts
* Uncertainty quantification
* Symbolic regression

ALAMO site: archimedes.cheme.cmu.edu/?q=alamo
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