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SIMULATION OPTIMIZATION 

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory 
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PROCESS DISAGGREGATION 

Block 1: 
Simulator 

Model 
generation 

Block 2: 
Simulator 

Model 
generation 

Block 3: 
Simulator 

Model 
generation 

Surrogate Models 
Build simple and accurate 
models with a functional 

form tailored for an 
optimization framework 

Process Simulation 
Disaggregate process into 

process blocks 

Optimization Model 
Add algebraic constraints 

design specs, heat/mass 
balances, and logic 

constraints 
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Build a model of output variables 𝒛 as a function of 
input variables x over a specified interval 

 
 
 

 
 

 
 

 

LEARNING PROBLEM 

Independent variables: 
Operating conditions, inlet flow 

properties, unit geometry 
 

Dependent variables: 
Efficiency,  outlet flow conditions, 

conversions, heat flow, etc. 
 

Process simulation or Experiment 

𝑥 ∈ ℝ𝑘 
𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑘

 

𝑧1
𝑧2
⋮
𝑧𝑙
⋮
𝑧𝑚

 𝑧 ∈ ℝ𝑚 
𝑧 = 𝑓(𝑥) 
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• We aim to build surrogate models that are 
– Accurate 

• We want to reflect the true nature of the simulation 
 

– Simple 
• Tailored for algebraic optimization 

 
 
 
 
 

– Generated from a minimal data set 
• Reduce experimental and simulation requirements 

 

HOW TO BUILD THE SURROGATES 
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ALAMO 
Automated Learning of Algebraic Models for Optimization 

true 
Stop 

Update 
training 
data set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Black-box function 

Initial sampling 

Build surrogate 
model 

Current model 

Model 
error 

Adaptive 
sampling 

Update 
training 
data set 

New model 
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MODEL COMPLEXITY TRADEOFF 
Kriging [Krige, 63] 

Neural nets [McCulloch-Pitts, 43]  
Radial basis functions [Buhman, 00] 

Model complexity 

M
od

el
 a

cc
ur
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y 

Linear response surface 

Preferred 
region  
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• Goal: Identify the functional form and complexity of the 
surrogate models 
 

• Functional form:  
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions 
 
 
 
 
 

MODEL IDENTIFICATION 
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• Step 1: Define a large set of potential basis functions 
 
 

• Step 2: Model reduction 

OVERFITTING AND TRUE ERROR 

True error 
Empirical error 

Complexity 

E
rr

or
 

Ideal Model 

Overfitting Underfitting 
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• Qualitative tradeoffs of model 
reduction methods 

MODEL REDUCTION TECHNIQUES 

Backward elimination [Oosterhof, 63]  
Forward selection [Hamaker, 62] 

Stepwise regression [Efroymson, 60] 

Regularized regression techniques 
• Penalize the least squares objective using the 

magnitude of the regressors [Tibshirani, 95] 

Best subset methods 
• Enumerate all possible 

subsets 
 



11 Carnegie Mellon University 

MODEL SIZING 

Complexity = number of terms allowed in the model 

Goodness-of-fit 
measure 6th term was not worth the 

added complexity 
 

Final model includes 5 terms 
Some measure of 

error that is 
sensitive to 
overfitting 

(AICc, BIC, Cp) 

Solve for the 
best one-term 

model Solve for the 
best two-term 

model 
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BASIS FUNCTION SELECTION 
Find the model with the 

least error 

We will solve this model for increasing T 
until we determine a model size 



13 Carnegie Mellon University 

ALAMO 
Automated Learning of Algebraic Models for Optimization 

true 
Stop 

Update 
training 
data set 

Start 

false 

Initial sampling 

Build surrogate 
model 

Adaptive 
sampling 

Model 
converged? 

Model 
error 

Error maximization 
sampling 
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• Search the problem space for areas of model inconsistency 
or model mismatch 
 

• Find points that maximize the model error with respect to 
the independent variables 
 
 
 

 
 
– Derivative-free solvers work well in low-dimensional spaces 

[Rios and Sahinidis, 12] 
– Optimized using a black-box or derivative-free solver (SNOBFIT) 

[Huyer and Neumaier, 08] 
 
 

ERROR MAXIMIZATION SAMPLING 

Surrogate model 
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• Goal – Compare methods on three target metrics 
 
 
 

• Modeling methods compared 
– ALAMO modeler – Proposed methodology 
– The LASSO – The lasso regularization 
– Ordinary regression – Ordinary least-squares regression 

 
• Sampling methods compared (over the same data set size) 

– ALAMO sampler – Proposed error maximization technique 
– Single LH – Single Latin hypercube (no feedback) 

COMPUTATIONAL RESULTS 

Model simplicity 3 Data efficiency 2 Model accuracy 1 
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Fraction of problems solved 
 
 
 

 

Ordinary regression 

ALAMO modeler 
the lasso 

Ordinary regression 
ALAMO modeler 

the lasso 

(0.005, 0.80) 
80% of the problems 

had ≤0.5% error 
 

70% of 
problems 

solved exactly 
 

Normalized test error 

error maximization sampling 

single Latin hypercube 

Model simplicity 3 Data efficiency 2 Model accuracy 1 

Normalized test error 
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ALAMO sampler 
Single LH 

ALAMO sampler 
Single LH 

ALAMO sampler 
Single LH 

Ordinary regression 

ALAMO modeler 

the lasso 

Normalized test error 

Fraction of 
problems solved 

 
 
 

 

Model simplicity 3 Data efficiency 2 Model accuracy 1 



18 Carnegie Mellon University 

more complexity than required 

Results over a test set of 45 known functions treated as black boxes 
with bases that are available to all modeling methods. 

 

Modeling type, Median 

Model simplicity 3 Data efficiency 2 Model accuracy 1 
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• Balance fit (sum of square errors) with model complexity 
(number of terms in the model; denoted by p) 

MODEL SELECTION CRITERIA 

Corrected Akaike Information Criterion 

𝐴𝐴𝐶𝑐 = 𝑁 log
1
𝑁
� 𝑧𝑖 − 𝑋𝑖𝛽 2
𝑁

𝑖=1

+ 2𝒑+
2𝒑 𝒑+ 1
𝑁 − 𝒑 − 1

 

Mallows’ Cp  

𝐶𝑝 =
∑ 𝑧𝑖 − 𝑋𝑖𝛽 2𝑁
𝑖=1

𝜎2�
+ 2𝒑 − 𝑁 

Hannan-Quinn Information Criterion 

𝐻𝐻𝐻 = 𝑁 log
1
𝑁
� 𝑧𝑖 − 𝑋𝑖𝛽 2
𝑁

𝑖=1

+ 2𝒑 log (log 𝑁 ) 

Bayes Information Criterion 

𝐵𝐵𝐵 =
∑ 𝑧𝑖 − 𝑋𝑖𝛽 2𝑁
𝑖=1

𝜎2�
+ 𝒑 log (𝑁) 

Mean Squared Error 

𝑀𝑀𝑀 =
∑ 𝑧𝑖 − 𝑋𝑖𝛽 2𝑁
𝑖=1
𝑁 − 𝒑 − 1
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CPU TIME COMPARISON 

0.01

0.1

1

10

100

1000

10000

100000

20 30 40 50 60 70 80

CP
U

 ti
m

e 
(s

) 

Problem Size 

Cp BIC AIC, MSE, HQC

• Eight benchmarks from the UCI and CMU data sets 
• Seventy noisy data sets were generated with multicolinearity 

and increasing problem size (number of bases) 

• BIC solves more than 
two orders of magnitude 
faster than AIC, MSE and 
HQC 
– Optimized directly via a 

single mixed-integer 
convex quadratic model 
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MODEL QUALITY COMPARISON 
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Problem Size 

Cp BIC AIC HQC MSE

• BIC leads to smaller, more accurate models 
– Larger penalty for model complexity 
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• Expanding the scope of algebraic optimization 
– Using low-complexity surrogate models to strike a balance 

between optimal decision-making and model fidelity 
• Surrogate model identification 

– Simple, accurate model identification – Integer optimization 
• Error maximization sampling 

– More information found per simulated data point 

ALAMO REMARKS 

New 
surrogate 

model 

Surrogate 
model 
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• Use freely available system knowledge to strengthen model 
– Physical limits 
– First-principles knowledge 
– Intuition 

 

• Non-empirical restrictions can be applied to general 
regression problems 

THEORY UTILIZATION 

empirical data non-empirical information 
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• Challenging due to the semi-infinite nature of the regression 
constraints 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

CONSTRAINED REGRESSION 

Standard regression 

Surrogate 
model 

easy 

tough 
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IMPLIED PARAMETER RESTRICTIONS 

Step 1: Formulate 
constraint in z- and x-space 

Step 2: Identify a sufficient 
set of β-space constraints  

1 parametric 
constraint  

 

4 β-constraints 
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Multiple responses Individual responses Response bounds 

Response derivatives Alternative domains Boundary conditions 

Multiple responses 

mass balances, sum-to-
one, state variables 

Individual responses 

mass and energy balances, 
physical limitations 

TYPES OF RESTRICTIONS 
Response bounds 

pressure, temperature, 
compositions 

Response derivatives Alternative domains Boundary conditions 

monotonicity, numerical 
properties, convexity 

safe extrapolation, 
boundary conditions 

Add 
no slip 

velocity 
profile 
model 

safe extrapolation, 
boundary conditions 

Problem 
Space 

Extrapolation zone 
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CARBON CAPTURE SYSTEM DESIGN 

• Discrete decisions:   How many units? Parallel trains?  
What technology used for each reactor? 

• Continuous decisions: Unit geometries 
• Operating conditions:  Vessel temperature and pressure, flow rates, 

    compositions 

Surrogate models for 
each reactor and 
technology used 
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SUPERSTRUCTURE OPTIMIZATION 
Mixed-integer nonlinear 

programming model 
 

• Economic model 
• Process model 
• Material balances 
• Hydrodynamic/Energy balances 
• Reactor surrogate models 
• Link between economic model 

and process model 
• Binary variable constraints 
• Bounds for variables 

 



29 Carnegie Mellon University 

GLOBAL MINLP SOLVERS ON CMU/IBMLIB 

BARON 13 

LINDOGLOBAL 

BARON 14 

COUENNE 

SCIP 

ANTIGONE 
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• ALAMO provides algebraic models that are 
 Accurate and simple 
 Generated from a minimal number of function evaluations 

• ALAMO’s constrained regression facility allows modeling of 
 Bounds on response variables 
 Convexity/monotonicity of response variables 

• On-going efforts 
• Uncertainty quantification 
• Symbolic regression 

• ALAMO site: archimedes.cheme.cmu.edu/?q=alamo 

CONCLUSIONS 
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