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Life Cycle Optimization for Sustainability

• Life Cycle Optimization
▪ LCA + Supply Chain Optimization (similar to process design optimization)

Process 
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Process 
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Process 
Optimization

Life Cycle 
Analysis

Life Cycle / 
Green Design

Life Cycle 
Optimization

• Challenges
▪ How to define the “optimal” systems boundary?
▪ How to deal with the data quality and uncertainty?
▪ How to seamlessly integrate LCA into process systems optimization?
▪ How to effectively solve complex, large-scale life cycle optimization problems?
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Life Cycle Optimization (LCO)

Integrating life cycle analysis approach with multi-
objective optimization techniques

• Functional unit must be defined in Phase I of LCA
• Functional unit serves as the basis for calculation and comparison
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Functional Unit of Multi-Product Systems

Calculation of functional unit for multiproduct product systems

Functional unit is a common unit that provides functions

Why functional-unit-based metrics?
• Important in practice (e.g. average GPA, LCOE)

• Necessary for multi-product systems (product-centric view)

• May significantly differ from optimizing total values

min: Total Env. Impact ≠ min: Unit Env. Impact
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General Model Formulation

• Functional-Unit-Based Life Cycle Optimization
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• Constraints
• Mass balance and energy balance
• Cash flow and financial constraints
• Capacity constraints
• Logic constraints for discrete variables
• Life cycle environmental impact
• ……

• Discrete Variables
• Technology selection
• Facility location
• Network design
• Discrete capacity levels
• Discontinuous operating decisions
• ……
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• Environmental Objective
• Typically mixed-integer linear function

• Process-based LCA or reformulate 
Input-output (IO) model into LP form 
for IO-based or hybrid LCA

▪ Mixed-integer linear fractional program
• Non-convex MINLP
• Need global optimization 

Mixed-Integer Linear Fractional Program
(MILFP)
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General Model Formulation

• Functional-Unit-Based Life Cycle Optimization
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• Economic Objective
• CAPEX + OPEX
• CAPEX may include scaling 

factors for capital investments
• Capital cost term = 
• Scale factor
• Non-convex MIFP MIFP with Separable Concave Terms
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Parametric Approach
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Parametric MIP Subproblem

• Equivalence 
• (x, y)* is the global optimal solution of the original MIFP problem if 

and only if (x, y)* is the global optimal solution of the parametric 
MIP subproblem with the parameter q* such that F(q*) = 0

• Assumption: Positive denominator, D (x, y) > 0

• Properties of F(q)
• Concave, continuous, monotonically decreasing 
• Unique solution for F(q*) = 0
• −D(x, y)* is a subgradient of F(q) q

F(q)

0

q*
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• Subgradient of  F(q) 
• Upper bound sequence: q1 ≥ q2 ≥ q3 ≥ … ≥ q*

Root-Finding Method (Newton’s)

q0
q1q2

q3

q*

( )*,D x y≈ −
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Parametric Algorithm (Exact Newton’s)

• Solve a sequence of 
MIP subproblems

• All MIP subproblems 
have the same size

Set 𝒒𝒒𝟏𝟏 = 𝟎𝟎,
Initialize 𝒌𝒌 = 𝟏𝟏

Solve the parametric MIP subproblem
𝑭𝑭 𝒒𝒒𝒌𝒌 =min 𝑵𝑵 𝒙𝒙,𝒚𝒚 − 𝒒𝒒𝒌𝒌 � 𝑫𝑫 𝒙𝒙,𝒚𝒚 | 𝒙𝒙,𝒚𝒚 ∈ 𝑺𝑺

denote the optimal solution as 𝒙𝒙𝒌𝒌,𝒚𝒚𝒌𝒌

If 𝟎𝟎 ≤ 𝑭𝑭 𝒒𝒒𝒌𝒌 ≤ 𝜹𝜹 ?
𝒌𝒌 = 𝒌𝒌 + 𝟏𝟏,

𝒒𝒒𝒌𝒌 =
𝑵𝑵(𝒙𝒙𝒌𝒌,𝒚𝒚𝒌𝒌)
𝑫𝑫(𝒙𝒙𝒌𝒌,𝒚𝒚𝒌𝒌)

Stop and set 𝒙𝒙𝒌𝒌,𝒚𝒚𝒌𝒌 as the optimal solution

Yes

No
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• Converge superlinearly
• Exact Newton’s: quadratic rate

• Trade-off: more iterations v.s. shorter time per iteration 
(for solving the parametric MIP subproblems)

• Applicable to general (convex or nonconvex) MIFPs

Parametric Algorithm (Inexact Newton’s)

• MIP is NP-hard
• Globally optimization (0% gap) 

of all MIPs maybe challenging

Convergence guaranteed if each 
(parametric) MIP is solved to a 
relative optimality gap < 100%
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Tailored Global Optimization Algorithm
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• Global optimization based on the model structure
▪ Inexact parametric approach for mixed-integer fractional terms
▪ Branch-and-refine method for separable concave terms



• Global Optimization for MINLPs with separable concave terms
▪ Piece-wise linear approximation (MILP) gives global lower bounds
▪ Feasible solutions provide upper bounds – solving a reduced MINLP 
▪ Increasing the number of pieces as iteration number increases

Branch-and-Refine Algorithm

0.6x

secant

UB1

LB1

LB2

UB2
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Solution Algorithm

Inner loop:
Branch-and-
refine algorithm

Outer loop:
Parametric 
algorithm
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Application on Hydrocarbon Biofuels

Agricultural residues
Energy crops
Wood residues

Gasoline
Diesel
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Hydrocarbon Biofuel Supply Chain

Biomass 
Acquisition

Biofuels 
Production

Transportation & 
Distribution

Biofuels 
End-Use

Cellulosic biomass: 
residual, non-edible parts of food crops as well as other non-food crops

Agricultural residues Energy crops Wood residues
Residues of corn, wheat, 

cotton, soybean, etc.
Switchgrass Forest residues and 

primary mills, secondary 
mills, urban wood residues
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Hydrocarbon Biofuel Supply Chain

Biomass 
Acquisition

Biofuels 
Production

Transportation & 
Distribution

Biofuels 
End-Use
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Processing & 
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Pathway
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Hydrocarbon Biofuel Supply Chain

Biomass 
Acquisition

Biofuels 
Production

Transportation & 
Distribution

Biofuels 
End-Use

Biomass

Rotating Cone 
Reactor Pyrolysis

Fluidized Bed 
Reactor Pyrolysis

Bio-oil & Bio-slurry

Gasification + FT 
Synthesis Hydro-Processing

Biofuels

Distributed 
Pathway
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Application on Hydrocarbon Biofuels

Centralized pathway

Distributed pathway

Agricultural residues
Energy crops
Wood residues

Bio-oil
Bio-slurry

Gasoline
Diesel

Functional Unit: Gasoline-Equivalent Gallon (GEG) 
• 1 GEG = 114,000 BTU per gallon 
• 1 gallon of diesel = 1.1363636 GEG
• 1 gallon of gasoline = 1 GEG 
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GIS Data for Illinois

a) Population distribution of Illinois 
b) Spatial distribution of agricultural residues in Illinois 
c) Spatial distribution of energy crops in Illinois
d) Spatial distribution of wood residues in Illinois
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Computational Result (a Pareto optimal solution)

• Functional-Unit-Based Life Cycle Optimization

• Mixed-Integer Linear Fractional Programming
▪ 224 discrete variables
▪ 131,351 continuous variables
▪ 30,826 constraints

{ }
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Yue, D., Kim, M., & You, F. (2013). Design of Sustainable Product Systems and Supply Chains with Life 
Cycle Optimization Based on Functional Unit. ACS Sustainable Chemistry & Engineering, 1, 1003–1014.



Pareto Curve
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Pareto Curve

Most environmentally sustainable solution
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Pareto Curve

Most cost-effective solution
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Pareto Curve

The “good choice” solution
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Application on Algae Processing Network
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Algae Processing Network Superstructure
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7,800+ processing routes
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Algae Processing Network Superstructure

<1,2> Flat plate 
photobioreator

<1,3> Bubble column 
photobioreator

<1,4> Tubular 
photobioreator
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• Optimal design and operations of algal biorefinery
▪ Selection of technology, pathway, and processing methods
▪ Determination of product portfolio under the given feed
▪ Mass balance, capacity, and equipment sizing
▪ Energy and utility consumption
▪ Process Economics 
▪ Environmental Sustainability 

• Life cycle optimization w/ FU
▪ Recycle water and nutrients
▪ Direct and indirect GHG emissions
▪ Multiple fuel/chemical products
▪ Cost-effective & sustainable design

Algae Process Design and Optimization
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• Objectives:
▪ Minimize: Life cycle GHG emission per GGE (life cycle analysis)

• Direct emissions: Cultivation, remnant treatment, & utility generation
• Indirect emissions: External utility, e.g. electricity and steam

▪ Minimize: Cost per GGE (techno-economic analysis)
• Credit from selling by-products (glycerol, fertilizer, and biogas)
• Annualized capital cost (cc)
• Operating cost

• Constraints:
▪ Process network design specifications
▪ Technology and pathway selection
▪ Mass and material balance
▪ Production planning, and capacity limits
▪ Energy balance and utility consumption

Model Formulation

Choose Discrete (0-1), continuous variables

• Mixed-Integer Nonconvex Fractional Programming
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, 0.6cc xα αβ ≈= ⋅

• Mixed-Integer Nonconvex Fractional Programming
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• Problem size (MIFP with concave terms):
▪ Discrete 0-1 variables: 49 
▪ Continuous variables:  32,958
▪ Constraints:                  56,274
▪ Non zero elements:      145,383 

Computational Results

SCIP Bonmin SBB Proposed algorithm
$/GGE CPU(s) $/GGE CPU(s) $/GGE CPU(s) $/GGE CPU(s) Iter.

A --- 72,000 Infeas. 72,000 Infeas. 72,000 9.712 9 10

B --- 72,000 Infeas. 72,000 Infeas. 72,000 8.925 3 6

C --- 72,000 Infeas. 72,000 Infeas. 72,000 7.679 3 6

D --- 72,000 Infeas. 72,000 Infeas. 72,000 7.017 3 6
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Gong, J., & You, F. (2014). Global Optimization for Sustainable Design and Synthesis of Algae Processing Network 
for CO2 Mitigation and Biofuel Production using Life Cycle Optimization. AIChE Journal, 60, 3195–3210.
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• Research challenges for life cycle optimization
▪ How to define the “optimal” systems boundary?
▪ How to deal with the data quality and uncertainty?
▪ How to seamlessly integrate LCA into process systems optimization?
▪ How to effectively solve complex, large-scale LCO problems?

• MINLP methods provide powerful tools for sustainability 
analysis, especially on life cycle optimization

• The need of more computationally efficient algorithms for 
previously intractable MINLP problems

Conclusion
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Happy 65th Birthday to my academic father, 
Professor Ignacio E. Grossmann

Thank you so much for your guidance and support, and for 
your many contributions to PSE and to the broader 

scientific and engineering community!

Congratulations on your 65th Birthday, Ignacio!
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